Log in

Temperature dependence of charging characteristic of C-free Li2O2 cathode in Li-O2 battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Charging characteristics of lithium–oxygen (Li-O2) batteries, using C-free lithium peroxide (Li2O2)-based electrodes, have been explored in this paper based on ether-based electrolytes. Charging overpotential can be lowered with the decrease of current density, and the most possible reason behind this may lie in the poor electrical conductivity of Li2O2. Meanwhile, high temperature seems beneficial for the charging process indicating Li-O2 batteries may be promising high-temperature batteries. Charging voltage plateau is about 3.05 V at the test temperature of 343 K and current density of 4.2 mA g−1, which is the lowest value among the Li-O2 batteries reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  2. Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5

    Article  CAS  Google Scholar 

  3. Abraham KM, Jiang Z, Carroll B (1997) J Mater Chem 9:1978–1988

    Article  CAS  Google Scholar 

  4. Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) J Power Sources 146:766–769

    Article  CAS  Google Scholar 

  5. Read J (2006) J Electrochem Soc 153:A96–A100

    Article  CAS  Google Scholar 

  6. Mohamed SN, Johari NA, Ali AM, Harun MK, Yahya MZ (2008) J Power Sources 183:351–354

    Article  CAS  Google Scholar 

  7. Xu W, **ao J, Zhang J, Wang DY, Zhang JG (2009) J Electrochem Soc 156:A773–A779

    Article  CAS  Google Scholar 

  8. Shanmukaraj D, Grugeon S, Gachot G, Laruelle S, Mathiron D, Tarascon JM, Armand M (2010) J Am Chem Soc 132:3055–3062

    Article  CAS  Google Scholar 

  9. Zhang D, Li RS, Huang T, Yu AS (2010) J Power Sources 195:1202–1206

    Article  CAS  Google Scholar 

  10. Débart A, Bao JL, Armstrong G, Bruce PG (2007) J Power Sources 174:1177–1182

    Article  Google Scholar 

  11. Débart A, Paterson AJ, Bao JL, Bruce PG (2008) Angew Chem Int Ed 47:4521–4524

    Article  Google Scholar 

  12. Lu YC, Xu ZC, Gasteiger HA, Chen S, Schifferli KH, Horn YS (2010) J Am Chem Soc 132:12170–12171

    Article  CAS  Google Scholar 

  13. ** L, Xu LP, Morein C, Chen CH, Lai M, Dharmarathna S, Dobley A, Suib SL (2010) Adv Funct Mater 22:3373–3382

    Article  Google Scholar 

  14. Giordani V, Freunberger SA, Bruce PG, Tarascon JM, Larcher D (2010) Electrochem Solid-State Lett 13:A165–A167

    Article  Google Scholar 

  15. Mirzaeian M, Hall PJ (2009) Electrochim Acta 54:7444–7451

    Article  CAS  Google Scholar 

  16. Yang XH, He P, **a YY (2009) Electrochem Commun 11:1127–1130

    Article  CAS  Google Scholar 

  17. Zhang GQ, Zheng JP, Liang R, Zhang C, Wang B, Hendrickson M, Plichta EJ (2010) J Electrochem Soc 157:A953–A956

    Article  CAS  Google Scholar 

  18. Williford RE, Zhang JG (2009) J Power Sources 194:1164–1170

    Article  CAS  Google Scholar 

  19. Beattie SD, Manolescu DM, Blair SL (2009) J Electrochem Soc 156:A44–A47

    Article  CAS  Google Scholar 

  20. Andrei P, Zheng JP, Hendrickson M, Plichta EJ (2010) J Electrochem Soc 157:A1287–A1295

    Article  CAS  Google Scholar 

  21. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2009) J Phys Chem C 113:20127–20134

    Article  CAS  Google Scholar 

  22. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2010) J Phys Chem C 114:9178–9186

    Article  CAS  Google Scholar 

  23. Hassoun J, Croce F, Armand M, Scrosati B (2011) Angew Chem Int Ed 50:2999–3002

    Article  CAS  Google Scholar 

  24. Peng ZQ, Freunberger SA, Hardwick LJ, Chen YH, Giordani V, Bardé F, Novák P, Graham D, Tarascon JM, Bruce PG (2011) Angew Chem Int Ed 50:6351–6355

    Article  CAS  Google Scholar 

  25. Zhang JG, Wang DY, Xu W, **ao J, Williford RE (2010) J Power Sources 195:4332–4337

    Article  CAS  Google Scholar 

  26. Wang DY, **ao J, Xu W, Zhang JG (2010) J Electrochem Soc 157:A760–A764

    Article  CAS  Google Scholar 

  27. Zhang J, Xu W, Liu W (2010) J Power Sources 195:7438–7444

    Article  CAS  Google Scholar 

  28. Mizuno F, Nakanishi S, Kotani Y, Yokoshi S, Iba H (2010) Electrochemistry 78:403–405

    Article  CAS  Google Scholar 

  29. **ao J, Hu JZ, Wang DY, Hu DH, Xu W, Graff GL, Nie ZM, Liu J, Zhang JG (2011) J Power Sources 196:5674–5678

    Article  CAS  Google Scholar 

  30. McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) J Am Chem Soc 133:18038–18041

    Article  CAS  Google Scholar 

  31. Freunberger SA, Chen YH, Peng ZQ, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) J Am Chem Soc 133:8040–8047

    Article  CAS  Google Scholar 

  32. Veith GM, Dudney NJ, Howe J, Nanda J (2011) J Phys Chem C 115:14325–14333

    Article  CAS  Google Scholar 

  33. Zhang ZC, Lu J, Assary RS, Du P, Wang HH, Sun YK, Qin Y, Lau KC, Greeley J, Redfern PC, Iddir H, Curtiss LA, Amine K (2011) J Phys Chem C 115:25535–25542

    Article  CAS  Google Scholar 

  34. Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase GV (2011) J Phys Chem A 115:12399–12409

    Article  CAS  Google Scholar 

  35. Wang H, **e K, Wang LY, Han Y (2012) J Power Sources 219:263–271

    Article  CAS  Google Scholar 

  36. Chen YH, Freunberger SA, Peng ZQ, Bardé F, Bruce PG (2012) J Am Chem Soc 134:7952–7957

    Article  CAS  Google Scholar 

  37. Peng ZQ, Freunberger SA, Chen YH, Bruce PG (2012) Science 337:563–566

    Article  CAS  Google Scholar 

  38. Mitchell RR, Gallant BM, Thompsona CV, Horn YS (2011) Energy Environ Sci 4:2952–2958

    Article  CAS  Google Scholar 

  39. Harding JR, Lu YC, Tsukada Y, Horn YS (2012) Phys Chem Chem Phys 14:10540–10546

    Article  CAS  Google Scholar 

  40. **ao J, Mei DH, Li XL, Xu W, Wang DY, Graff GL, Bennett WD, Nie ZM, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Nano Lett 11:5071–5078

    Article  CAS  Google Scholar 

  41. Laoire CÓ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) J Electrochem Soc 158:A302–A308

    Article  CAS  Google Scholar 

  42. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) Nat Chem 4:579–585

    Article  CAS  Google Scholar 

  43. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) J Phys Chem Lett 2:1161–1166

    Article  CAS  Google Scholar 

  44. Freunberger SA, Chen YH, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) Angew Chem Int Ed 50:8609–8613

    Article  CAS  Google Scholar 

  45. Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) J Am Chem Soc 128:1390–1393

    Article  CAS  Google Scholar 

  46. Xu W, Viswanathan VV, Wang DY, Towne SA, **ao J, Nie ZM, Hu DH, Zhang JG (2011) J Power Sources 196:3894–3899

    Article  CAS  Google Scholar 

  47. Thotiyl MM, Freunberger SA, Peng ZQ, Bruce PG (2012) J Am Chem Soc 135:494–500

    Article  Google Scholar 

  48. McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) J Phys Chem Lett 3:997–1001

    Article  CAS  Google Scholar 

  49. Viswanathan V, Thygesen KS, Hummelshøj JS, Nørskov JK, Girishkumar G, McCloskey BD, Luntz AC (2011) J Chem Phys 135:214704

    Article  CAS  Google Scholar 

  50. Albertus P, Girishkumar G, McCloskey BD, Sánchez-Carrera RS, Kozinsky B, Christensen J, Luntz AC (2011) J Electrochem Soc 158:A343–A351

    Article  CAS  Google Scholar 

  51. Kang J, Jung YS, Wei SH, Dillon AC (2012) Phys Rev B 85:032510

    Google Scholar 

  52. Hummelshøj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, Luntz AC, Jacobsen KW, Nørskov JK (2010) J Chem Phys 132:071101

    Article  Google Scholar 

  53. Barin I, Platzki G (1995) Thermochemical data of pure substances, 3rd edn. Germany

  54. **ong SZ, **e K, Hong XB (2011) Battery Bimonthly 41:72–75

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Synergistic Innovative Joint Foundation of AEP-SCU (no. 0082604132222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yungui Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M., Zhu, D., Zhang, L. et al. Temperature dependence of charging characteristic of C-free Li2O2 cathode in Li-O2 battery. J Solid State Electrochem 17, 2061–2069 (2013). https://doi.org/10.1007/s10008-013-2067-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2067-6

Keywords

Navigation