Log in

Effect of strain on the photoelectric properties of molybdenum ditelluride under vacancy defects: a DFT investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

This study explores the impact of deformation on the electrical and optical characteristics of monolayer cadmium telluride (MoTe2) with vacancies, using the foundational principles of density functional theory. It was discovered that both strain and imperfections alter the electrical characteristics of monolayer MoTe2. Under VTe-MoTe2, a direct-to-indirect band-gap transition occurs. In DTe-MoTe2, the band-gap value reduces dramatically, the conduction band changes downward, and the carrier concentration rises. The DVTe-induced band gap state is closer to the Fermi energy level than the VTe-induced band gap state. In this paper, DTe-MoTe2 is chosen for tensile deformation. The results show that the band-gap value tends to decrease by increasing tensile deformation. When the stretching value reaches 10%, the lower bound of the conduction band and the top of the valence band overlap, and the system is converted from a semiconductor to a metal. Considering the density of states, the missing state MoTe2 is mainly contributed by the participation of Te-s, Te-p, and Mo-d orbitals. In terms of optical qualities, the absorption and reflection peaks are red-shifted and blue-shifted, respectively. It is hoped that these effects on the optoelectronic properties will be widely applied.

Methods

In this study, we utilize the generalized gradient approximation plane-wave pseudopotential method, incorporating Perdew-Burke Ernzerhof (PBE) generalized functions and following the fundamental principles of the density functional theory framework. A 3 × 3 × 1 supercell was constructed as an undoped model based on a MoTe2 monolayer, which consists of 9 Mo atoms and 18 Te atoms. The vacuum flat plate was set to 15 Å along the z-direction to avoid interactions between the monolayers. For electronic structure calculations, the energy cutoff was set to 450 eV. Each model’s computational process and structural optimization were carried out using the Monkhorst–Pack specialized K-point sampling approach. Crystal optimization computations used a 3 × 3 × 1 Monkhorst–Pack K-point grid for molybdenum ditelluride monolayers and a 9 × 9 × 1 K-point grid for electronic system analysis, analyzing state density and optical characteristics, respectively. For the structural optimization, the convergence requirements for maximum force, maximum atom displacement, maximum stress, and energy change were defined at 0.03 eV/Å, 0.001 Å, 0.05 Gpa, and 1.0 × 10−5 eV/atom, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data supporting the conclusions of this work are included in the publication.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  2. Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109

    Article  Google Scholar 

  3. Son Y-W, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97(21):216803

    Article  PubMed  Google Scholar 

  4. Liao W, Zhou B, Wang H, Zhou G (2010) Electronic structures for armchair-edge graphene nanoribbons under a small uniaxial strain. Euro Phys J B 76:463–467

    Article  CAS  Google Scholar 

  5. Hu L, Hu X, Wu X, Du C, Dai Y, Deng J (2010) Density functional calculation of transition metal adatom adsorption on graphene. Physica B 405(16):3337–3341

    Article  CAS  Google Scholar 

  6. Rao C, Subrahmanyam K, Ramakrishna Matte H, Maitra U, Moses K, Govindaraj A (2011) Graphene: synthesis, functionalization and properties. Int J Mod Phys B 25(30):4107–4143

    Article  CAS  Google Scholar 

  7. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  CAS  PubMed  Google Scholar 

  8. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

    Article  CAS  PubMed  Google Scholar 

  9. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275

    Article  PubMed  Google Scholar 

  10. Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH (2017) Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 20(3):116–130

    Article  CAS  Google Scholar 

  11. Sanyal G, Lakshmy S, Vaidyanathan A, Kalarikkal N, Chakraborty B (2022) Detection of nitrobenzene in pristine and metal decorated 2D dichalcogenide VSe2: perspectives from density functional theory. Surfaces and Interfaces 29:101816

    Article  CAS  Google Scholar 

  12. Kumar A, Ahluwalia PK (2012) Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. E Phys J B 85(6):186

    Article  Google Scholar 

  13. Lezama IG, Arora A, Ubaldini A, Barreteau C, Giannini E, Potemski M, Morpurgo AF (2015) Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett 15(4):2336–2342

    Article  CAS  PubMed  Google Scholar 

  14. Ruppert C, Aslan B, Heinz TF (2014) Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett 14(11):6231–6236

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Tan QH, Wu JB et al (2016) Review on the Raman spectroscopy of different types of layered materials. Nanoscale 8:6435–6450

    Article  CAS  PubMed  Google Scholar 

  16. Luxa J, Jankovsky O, Sedmidubsky D et al (2015) Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenides MoS2 and WS2. Nanoscale 8:1960–1967

    Article  Google Scholar 

  17. Chen X (2015) Optical study on two dimensional transition metal dichalcogenides. University of Hong Kong 44:2629–2642

    Google Scholar 

  18. Tyagi P, Choudhary S (2021) Tuning the electronic and optical properties of molybdenite (MoS) by adsorption of alkali metals and halogens. Optic Mater 118:111248

    Article  CAS  Google Scholar 

  19. Kaplan D, Swaminathan V, Recine G, Balu R, Karna S (2013) Bandgap tuning of mono and bilayer graphene doped with group IV elements. J Appl Phys 113:183701

    Article  Google Scholar 

  20. Wang G, Chernikov A, Glazov MM, Heinz TF, Marie X, Amand T, Urbaszek B (2018) Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev Mod Phys 90:021001

    Article  CAS  Google Scholar 

  21. Zhang S, Yan Z, Li Y, Chen Z, Zeng H (2015) Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew Chem 127:3155–3158

    Article  Google Scholar 

  22. Zhang S, Wang N, Liu S, Huang S, Zhou W, Cai B, **e M, Yang Q, Chen X, Zeng H (2016) Two-dimensional GeS with tunable electronic properties via external electric field and strain. Nanotechnology 27(27):274001

    Article  PubMed  Google Scholar 

  23. Qin Y, Shen X, Bai Y (2021) First-principles prediction of strain-induced gas-sensing tuning in tin sulfide. Phys Chem Chem Phys 23(34):18712–18723

    Article  CAS  PubMed  Google Scholar 

  24. Almayyali AOM, Jappor HR (2024) PbBi2Se4 monolayer: a new 2D material with outstanding electronic, photocatalytic, and optical properties. Solid State Sci 150:107483

    Article  CAS  Google Scholar 

  25. Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6:5449–5456

    Article  CAS  PubMed  Google Scholar 

  26. Zhou L, Zubair A, Wang Z, Zhang X, Ouyang F, Xu K, Fang W, Ueno K, Li J, Palacios T, Kong J, Dresselhaus MS (2016) Synthesis of high-quality large-area homogenous 1T’ MoTe2 from chemical vapor deposition. Adv Mater 28(43):9526–9531

    Article  CAS  PubMed  Google Scholar 

  27. Zhou J, Liu F, Lin J, Huang X, **a J, Zhang B, Zeng Q, Wang H, Zhu C, Niu L, Wang X, Fu W, Yu P, Chang T-R, Hsu C-H, Wu D, Jeng H-T, Huang Y, Lin H, Shen Z, Yang C, Lu L, Suenaga K, Zhou W, Pantelides ST, Liu G, Liu Z (2017) Large-area and high-quality 2D transition metal telluride. Adv Mater 29(3):1603471

    Article  Google Scholar 

  28. Zhou L, Xu K, Zubair A, Liao AD, Fang W, Ouyang F, Lee Y-H, Ueno K, Saito R, Palacios T, Kong J, Dresselhaus MS (2015) Large-area synthesis of high-quality uniform few-layer MoTe2. J Am Chem Soc 137(37):11892–11895

    Article  CAS  PubMed  Google Scholar 

  29. Kretschmer S, Komsa HP, Boggild P, Krasheninnikov AV (2017) Structural transformations in two-dimensional transition-metal dichalcogenide MoS2 under an electron beam: insights from first-principles calculations. J Phys Chem Lett 8(13):3061–3067

    Article  CAS  PubMed  Google Scholar 

  30. Tang Q (2018) Tuning the phase stability of Mo-based TMD monolayers through coupled vacancy defects and lattice strain. J Mater Chem C 6(35):9561–9568

    Article  CAS  Google Scholar 

  31. Cho S, Kang SH, Yu HS, Kim HW, Ko W, Hwang SW, Han WH, Choe DH, Jung YH, Chang KJ, Lee YH, Yang H, Kim SW (2017) Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride. 2D Mater. 4(2):021030

    Article  Google Scholar 

  32. Saigal N, Ghosh S (2016) Evidence for two distinct defect related luminescence features in monolayer MoS2. Appl Phys Lett 109(12):122105

    Article  Google Scholar 

  33. Lakshmy S, Kandasamy M, Kalarikkal N, Chakraborty B (2024) Effect of biaxial strain and vacancy defects in 2D MoS2 monolayer for the sensing of nitrobenzene: A DFT investigation. Surfaces and Interfaces 44:103777

    Article  CAS  Google Scholar 

  34. Dai X, Yang Z, Li A, Yang J, Ouyang F (2019) Character of defect states in vacancy-doped MoTe2 monolayer: spatial localization, flat bands and hybridization gap. Superlattices Microstruct 130:528–538

    Article  CAS  Google Scholar 

  35. Bafekry A, Faraji M, Fadlallah MM, Mortazavi B, Ziabari AA, Khatibani AB, Nguyen CV, Ghergherehchi M, Gogova D (2021) Point defects in a two-dimensional ZnSnN2 nanosheet: a first-principles study on the electronic and magnetic properties. J Phys Chem C 125(23):13067–13075

    Article  CAS  Google Scholar 

  36. Bafekry A, Faraji M, Karbasizadeh S, Khatibani AB, Ziabari AA, Gogova D, Ghergherehchi M (2021) Point defects in two-dimensional BeO monolayer: a first-principles study on electronic and magnetic properties. Phys Chem Chem Phys 23(42):24301–24312

    Article  CAS  PubMed  Google Scholar 

  37. Bafekry A, Stampfl C, Peeters FM (2020) The electronic, optical, and thermoelectric properties of monolayer PbTe and the tunability of the electronic structure by external fields and defects. Physica Status Solidi (b) 257(6):2000182

    Article  CAS  Google Scholar 

  38. Bafekry A, Faraji M, Karbasizadeh S, Jappor HR, Sarsari IA, Ghergherehchi M, Gogova D (2021) Investigation of vacancy defects and substitutional do** in AlSb monolayer with double layer honeycomb structure: a first-principles calculation. J Phys: Condens Matter 34(6):065701

    Google Scholar 

  39. Bafekry A, Shahrokhi M, Shafique A, Jappor HR, Fadlallah MM, Stampfl C, Ghergherehchi M, Mushtaq M, Feghhi SAH, Gogova D (2021) Semiconducting chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula with outstanding properties: a first-principles calculation study. ACS Omega 6(14):9433–9441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bafekry A, Faraji M, Fadlallah MM, Hoat DM, Jappor HR, Sarsari IA, Ghergherehchi M, Feghhi SAH (2021) Electronic, optical and thermoelectric properties of a novel two-dimensional SbXY (X = Se, Te; Y = Br, I) family: ab initio perspective. Phys Chem Chem Phys 23(45):25866–25876

    Article  CAS  PubMed  Google Scholar 

  41. Bafekry A, Fadlallah MM, Faraji M, Hieu NN, Jappor HR, Stampfl C, Ang YS, Ghergherehchi M (2022) Puckered Penta-like PdPX (X = O, S, Te) Semiconducting nanosheets: first-principles study of the mechanical, electro-optical, and photocatalytic properties. ACS Appl Mater Interfaces 14(18):21577–21584

    Article  CAS  PubMed  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  43. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristall 220:567–570

    CAS  Google Scholar 

  44. Ying D, Liu G, He J, Yang Z, Zhang G (2024) Biaxial tensile-compressive deformation on the electronic structure and optical properties of doped with different concentrations F-MoTe2: a first-principles study. Physica B 681:415856

    Article  Google Scholar 

  45. Ma Y, Dai Y, Guo M, Niu C, Lu J, Huang B (2011) Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys Chem Chem Phys 13(34):15546–15553

    Article  CAS  PubMed  Google Scholar 

  46. Kan M, Nam HG, Lee YH, Sun Q (2015) Phase stability and Raman vibration of the molybdenum ditelluride (MoTe2) monolayer. Phys Chem Chem Phys 17:14866–14871

    Article  CAS  PubMed  Google Scholar 

  47. Feng Z, **e Y, Chen J, Yu Y, Zheng S, Zhang R, Li Q, Chen X, Sun C, Zhang H, Pang W, Liu J, Zhang D (2017) Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Materials 4(2):025018

    Article  Google Scholar 

  48. Guo H, Yang T, Yamamoto M, Zhou L, Ishikawa R, Ueno K, Tsukagoshi K, Zhang Z, Dresselhaus MS, Saito R (2015) Double resonance Raman modes in monolayer and few layer MoTe2. Phys Rev B 91(20):205415

    Article  Google Scholar 

  49. Nakaharai S, Yamamoto M, Ueno K, Lin Y, Li S, Tsukagoshi K (2015) Electrostatically reversible polarity of ambipolar α-MoTe2 transistors. ACS Nano 9(6):5976–5983

    Article  CAS  PubMed  Google Scholar 

  50. Szary M, Florjan DM, Babelek JA (2021) Sheet do** for improved sensitivity of HCl on MoTe2. Sur Sci 716:121964

    Article  Google Scholar 

Download references

Funding

This work was supported by the Department of Science & Technology of Liaoning Province (grant number 2023-MSLH-266).

Author information

Authors and Affiliations

Authors

Contributions

L, as the corresponding teacher, made the main directions of the paper. D, as the first author, wrote the main manuscript text, and Z checked the chart and conceived the direction of their papers. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guili Liu.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Liu, G. & Zhang, G. Effect of strain on the photoelectric properties of molybdenum ditelluride under vacancy defects: a DFT investigation. J Mol Model 30, 259 (2024). https://doi.org/10.1007/s00894-024-06057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-06057-1

Keywords

Navigation