Log in

Structural and electronic properties of clathrate-like hydride: MH6 and MH9 (M = Sc, Y, La)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The addition of central metal atoms to hydrogen clathrate structures is thought to provide a certain amount of “internal chemical pressure” to offset some of the external physical pressure required for compound stability. The size and valence of the central atoms significantly affect the minimum pressure required for the stabilization of hydrogen-rich compounds and their superconducting transition temperature. In recent years, many studies have calculated the minimum stable pressure and superconducting transition temperature of compounds with H24, H29, and H32 hydrogen clathrates, with centrally occupied metal atoms. In order to investigate the stability and physical properties of compounds with H cages in which the central atoms change in the same third group B, herein, based on first-principles calculations, we systematically investigated the lattice parameters, crystal volume, band structures, density of states, Mulliken analysis, charge density, charge density difference, and electronic localization function in \(Im\overline{3}m\)-MH6 and P63/mmc-MH9 systems with different centered rare earth atoms M (M = Sc, Y, La) under a series of pressures. We find that for MH9, the pressure mainly changes the crystal lattice parameters along the c-axis, and the contributions of the different H atoms in MH9 to the Fermi level are H3 > H1 > H2. The density of states at the Fermi level of MH6 is mainly provided by H 1 s. Moreover, the size of the central atom M is particularly important for the stability of the crystal. By observing a series of properties of the structures with H24 and H29 cages wrap** the same family of central atoms under a series of pressures, our theoretical study is helpful for further understanding the formation mechanism of high-temperature superconductors and provides a reference for future research and design of high-temperature superconductors.

Methods

The first principles based on the density functional theory and density functional perturbation theory were employed to execute all calculations by using the CASTEP code in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Wigner E, Huntington HB (1935) On the possibility of a metallic modification of hydrogen. J Chem Phys 3:764

    Article  CAS  Google Scholar 

  2. Dias RP, Silvera IF (2017) Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355:715

    Article  CAS  PubMed  Google Scholar 

  3. Loubeyre P, Occelli F, Dumas P (2020) Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577:631

    Article  CAS  PubMed  Google Scholar 

  4. Ashcroft NW (2004) Hydrogen dominant metallic alloys: high temperature superconductors. Phys Rev Lett 92:187002

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Tse JS, Tanaka K, Iitaka T, Ma Y (2012) Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc Natl Acad Sci 109:6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma L, Wang K, **e Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H, Liu G, Ma Y (2022) High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys Rev Lett 128:167001

    Article  CAS  PubMed  Google Scholar 

  7. Jeon H, Wang C, Liu S, Bok JM, Bang Y, Cho J-H (2022) Electron–phonon coupling and superconductivity in an alkaline earth hydride CaH6 at high pressures. New J Phys 24:083048

    Article  CAS  Google Scholar 

  8. Li Z, He X, Zhang C, Wang X, Zhang S, Jia Y, Feng S, Lu K, Zhao J, Zhang J, Min B, Long Y, Yu R, Wang L, Ye M, Zhang Z, Prakapenka V, Chariton S, Ginsberg PA, Bass J, Yuan S, Liu H, ** C (2022) Superconductivity above 200 K discovered in superhydrides of calcium. Nat Commun 13:2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng X, Zhang J, Gao G, Liu H, Wang H (2015) Compressed sodalite-like MgH6 as a potential high-temperature superconductor. RSC Adv 5:59292

    Article  CAS  Google Scholar 

  10. Hooper JGM, Terpstra T, Shamp A, Zurek E (2014) Composition and constitution of compressed strontium polyhydrides. J Phys Chem C 118:6433

    Article  CAS  Google Scholar 

  11. **e Y, Li Q, Oganov AR, Wang H (2014) Superconductivity of lithium-doped hydrogen under high pressure. Acta Crystallogr C Struct Chem 70:104

    Article  CAS  PubMed  Google Scholar 

  12. Zhou D, ** X, Meng X, Bao G, Ma Y, Liu B, Cui T (2012) Ab initio study revealing a layered structure in hydrogen-rich KH6 under high pressure. Phys Rev B 86:014118

    Article  Google Scholar 

  13. Szczesniak D, Szczesniak R (2015) Thermodynamics of the hydrogen dominant potassium hydride superconductor at high pressure. Solid State Commun 212:1

    Article  CAS  Google Scholar 

  14. Tsuppayakorn-aek P, Phaisangittisakul N, Ahuja R, Bovornratanaraks T (2021) High-temperature superconductor of sodalite-like clathrate hafnium hexahydride. Sci Rep 11:16403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhong G, Zhang C, Chen X, Li Y, Zhang R, Lin H (2012) Structural, electronic, dynamical, and superconducting properties in dense GeH4(H2)2. J Phys Chem C 116:5225

    Article  CAS  Google Scholar 

  16. Zhang Z, Cui T, Hutcheon MJ, Shipley AM, Song H, Du M, Kresin VZ, Duan D, Pickard CJ, Yao Y (2022) Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys Rev Lett 128:047001

    Article  CAS  PubMed  Google Scholar 

  17. Shi LT, Si JG, Turnbull R, Liang A, Liu PF, Wang BT (2024) Prediction of pressure-induced superconductivity in the ternary systems YScH2n (n=3-6). Phys Rev B 109:054512

    Article  CAS  Google Scholar 

  18. Gao K, Cui W, Shi J, Durajski AP, Hao J, Botti S, Marques MAL, Li Y (2024) Prediction of high-Tc superconductivity in ternary actinium beryllium hydrides at low pressure. Phys Rev B 109:014501

    Article  CAS  Google Scholar 

  19. Chen LC, Luo T, Cao ZY, Dalladay-Simpson P, Huang G, Peng D, Zhang LL, Gorelli FA, Zhong GH, Lin HQ, Chen XJ (2024) Synthesis and superconductivity in yttrium-cerium hydrides at high pressures. Nat Commun 15:1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sukmas W, Tsuppayakorn-aek P, Pinsook U, Ahuja R, Bovornratanaraks T (2022) Roles of optical phonons and logarithmic profile of electron-phonon coupling integration in superconducting Sc05Y05H6 superhydride under pressures. J Alloys Compd 901:163524

    Article  CAS  Google Scholar 

  21. Huo Z, Duan D, Jiang Q, Zhang Z, Cui T (2023) Cubic H3S stabilized by halogens: high-temperature superconductors at mild pressure. Sci China Phys, Mech Astron 66:118211

    Article  CAS  Google Scholar 

  22. Zhang S, Yu H, Wei J, Zhong T, Sun J, Wang Q, Liu L, Xu H, Ma J, Liu H (2024) High-Tc superconductivity in squeezed cubic CseH6 and C2TeH8 ternary polyhydrides. Phys Rev B 109:174507

    Article  Google Scholar 

  23. Gao J, Luo YX, Liu ZT, Liu QJ (2024) Superconductivity and stability of the novel electron-doped H3S system under high pressure. Chinese J Phys 90:364

  24. Troyan IA, Semenok DV, Kvashnin AG, Sadakov AV, Sobolevskiy OA, Pudalov VM, Ivanova AG, Prakapenka VB, Greenberg E, Gavriliuk AG, Lyubutin IS, Struzhkin VV, Bergara A, Errea I, Bianco R, Calandra M, Mauri F, Monacelli L, Akashi R, Oganov AR (2021) Anomalous high-temperature superconductivity in YH6. Adv Mater 33:2006832

    Article  CAS  Google Scholar 

  25. Troyan IA, Semenok DV, Kvashnin AG, Ivanova AG, Prakapenka VB, Greenberg E, Gavriliuk AG, Lyubutin IS, Struzhkin VV, Oganov AR (2019) Synthesis and superconductivity of yttrium hexahydride Im3m-YH6. ar**v: Preprint at https://arxiv.org/abs/1908.01534 

  26. Heil C, di Cataldo S, Bachelet GB, Boeri L (2019) Superconductivity in sodalite-like yttrium hydride clathrates. Phys Rev B 99:220502

    Article  CAS  Google Scholar 

  27. Liu H, Naumov II, Hoffmann R, Ashcroft NW, Hemley RJ (2017) Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc Natl Acad Sci 114:6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kong P, Minkov VS, Kuzovnikov MA, Drozdov AP, Besedin SP, Mozaffari S, Balicas L, Balakirev FF, Prakapenka VB, Chariton S, Knyazev DA, Greenberg E, Eremets MI (2021) Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat Commun 12:5075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Snider E, Dasenbrock-Gammon N, McBride R, Wang X, Meyers N, Lawler KV, Zurek E, Salamat A, Dias RP (2021) Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures. Phys Rev Lett 126:117003

    Article  CAS  PubMed  Google Scholar 

  30. Peng F, Sun Y, Pickard CJ, Needs RJ, Wu Q, Ma Y (2017) Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys Rev Lett 119:107001

    Article  PubMed  Google Scholar 

  31. Wang Y, Wang K, Sun Y, Ma L, Wang Y, Zou B, Liu G, Zhou M, Wang H (2022) Synthesis and superconductivity in yttrium superhydrides under high pressure. Chin Phys B 31:106201

    Article  CAS  Google Scholar 

  32. Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI (2015) Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525:73

    Article  CAS  PubMed  Google Scholar 

  33. Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets MI, Drozdov AP, Troyan IA, Hirao N, Ohishi Y (2016) Crystal structure of the superconducting phase of sulfur hydride. Nat Phys 12:835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Drozdov AP, Kong PP, Minkov VS, Besedin SP, Kuzovnikov MA, Mozaffari S, Balicas L, Balakirev FF, Graf DE, Prakapenka VB, Greenberg E, Knyazev DA, Tkacz M, Eremets MI (2019) Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569:528

    Article  CAS  PubMed  Google Scholar 

  35. Somayazulu M, Ahart M, Mishra AK, Geballe ZM, Baldini M, Meng Y, Struzhkin VV, Hemley RJ (2019) Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys Rev Lett 122:027001

    Article  CAS  PubMed  Google Scholar 

  36. Abe K (2017) Hydrogen-rich scandium compounds at high pressures. Phys Rev B 96:144108

    Article  Google Scholar 

  37. Shi LT, Wei YK, Liang AK, Turnbull R, Cheng C, Chen XR, Ji GF (2021) Prediction of pressure-induced superconductivity in the novel ternary system ScCaH2n (n = 1–6). J Mater Chem C 9:7284

    Article  CAS  Google Scholar 

  38. Song P, Hou Z, Castro PBd, Nakano K, Hongo K, Takano Y, Maezono R (2021) High-Tc superconducting hydrides formed by LaH24 and YH24 cage structures as basic blocks. Chem Mater 33:9501

    Article  CAS  Google Scholar 

  39. Semenok DV, Troyan IA, Ivanova AG, Kvashnin AG, Kruglov IA, Hanfland M, Sadakov AV, Sobolevskiy OA, Pervakov KS, Lyubutin IS, Glazyrin KV, Giordano N, Karimov DN, Vasiliev AL, Akashi R, Pudalov VM, Oganov AR (2021) Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater Today 48:18–28

    Article  CAS  Google Scholar 

  40. Ye X, Zarifi N, Zurek E, Hoffmann R, Ashcroft NW (2018) High hydrides of scandium under pressure: potential superconductors. J Phys Chem C 122:6298

    Article  CAS  Google Scholar 

  41. Qian S, Sheng X, Yan X, Chen Y, Song B (2017) Theoretical study of stability and superconductivity of ScHn (n=4–8) at high pressure. Phys Rev B 96:094513

    Article  Google Scholar 

  42. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie - Cryst Mater 220:567–570

    Article  CAS  Google Scholar 

  43. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244

    Article  CAS  Google Scholar 

  44. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Angyán JG (2006) Screened hybrid density functionals applied to solids. J Chem Phys 124:154709

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Hao J, Liu H, Tse JS, Wang Y, Ma Y (2015) Pressure-stabilized superconductive yttrium hydrides. Sci Rep 5:9948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baňacký P, Noga J (2021) Aspects of strong electron–phonon coupling in superconductivity of compressed metal hydrides MH6 (M = Mg, Ca, Sc, Y) with Im-3m structure. J Appl Phys 130:183902

    Article  Google Scholar 

  47. Du M, Li Z, Duan D, Cui T (2023) Superconducting phases of YH9 under pressure. Phys Rev B 108:174507

    Article  CAS  Google Scholar 

  48. Wu G, Huang H, **e X, Li M, Liu Y, Liang Y, Huang D, Duan F, Li B, Liu T. Cui (2019) Unexpected calcium polyhydride CaH4: a possible route to dissociation of hydrogen molecules. J Chem Phys 150:044507

    Article  PubMed  Google Scholar 

  49. Semenok DV, Kruglov IA, Savkin IA, Kvashnin AG, Oganov AR (2020) On distribution of superconductivity in metal hydrides. Curr Opin Solid State Mater Sci 24:100808

    Article  CAS  Google Scholar 

  50. Bi T, Zarifi N, Terpstra T, Zurek E (2018) The search for superconductivity in high pressure hydrides, Preprint at https://arxiv.org/abs/1806.00163

  51. Mcmahon JM, Ceperley DM (2011) High-temperature superconductivity in atomic metallic hydrogen. Phys Rev B 84:144515

    Article  Google Scholar 

  52. Borinaga M, Errea I, Calandra M, Mauri F, Bergara A (2016) Anharmonic effects in atomic hydrogen: superconductivity and lattice dynamical stability. Phys Rev B 93:174308

    Article  Google Scholar 

  53. Zhao W, Duan D, An D, Jiang Q, Liu Z, Ma T, Huo Z, Du J, Cui T (2024) High temperature superconductivity of quaternary hydrides XM3Be4H32 (X, M = Ca, Sr, Ba, Y, La, Ac, Th) under moderate pressure. Materials Today Physics 43:101387

    Article  CAS  Google Scholar 

  54. Tao YL, Zeng W, Gao J, Liu ZT, Jiao Z, Liu QJ (2023) Composition and structural characteristics of compressed alkaline earth metal hydrides. Phys Chem Chem Phys 25:26225

    Article  CAS  PubMed  Google Scholar 

  55. McMahon JM, Ceperley DM (2011) Ground-state structures of atomic metallic hydrogen. Phys Rev Lett 106:165302

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Numerical computations were performed on Hefei advanced computing center.

Funding

This work was supported by the National Undergraduate Innovation and Entrepreneurship Training Program (grant no. 202310613084), the Fundamental Research Funds for the Central Universities (no. 2682024ZTPY054), and 2022 Experimental Teaching Research and Reform Project of Southwest Jiaotong University (20221106).

Author information

Authors and Affiliations

Authors

Contributions

Ying-** Luo: data curation, investigation, writing—original draft; Juan Gao: investigation, writing—review and editing; Qi-Jun Liu: conceptualization, funding acquisition, project administration, writing—review and editing; Dai-He Fan: formal analysis; methodology; Zheng-Tang Liu: software, resources. All authors reviewed the manuscript.

Corresponding author

Correspondence to Juan Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 422 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, YX., Gao, J., Liu, QJ. et al. Structural and electronic properties of clathrate-like hydride: MH6 and MH9 (M = Sc, Y, La). J Mol Model 30, 229 (2024). https://doi.org/10.1007/s00894-024-06034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-06034-8

Keywords

Navigation