Log in

Comparative properties of ZnO modified Au/Fe nanocomposite: electronic, dynamic, and locator annealing investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

A computational representation was used to model the do** and nanomodification of ZnO nanoparticles incorporated in Au/Fe nanocomposite. Au/Fe nanostructure was geometrically and discussed to investigate its electronic properties such electronic band structure and PDOS spectra. Moreover, the ZnO interacted with Au/Fe system was illustrated concerning the modified properties present on the surface of the nanocomposite as it may behave different attribution of band gap evaluated after ZnO modification included. Molecular dynamic simulation of the whole nano system was studied to predict the system stability concerning temperature and energy parameters during 100 ps simulation time. The most effective models under investigation were evaluated using adsorption annealing computations associated with the adsorption energy surface. A highly stable energetic adsorption system was anticipated by the periodic adsorption-annealing calculation.

Methods

Au and Fe pure metals nanostructures were studied as a separate molecule with (0 0 1) plane surface for optimum energy minimization. Dmol3 module in/materials studio software was utilized for this protocol. The designed Au/Fe layers for nanostructure building material was computationally optimized, where DFT level was considered involving generalized gradient approximation (GGA) with Perdew–Burke–Ernzerh (PBE) exchange functional. In the computations of the structure matrix simulation, the global orbital cutoff was selected. To address the weak quantification of the standard DFT functionals, Tkatchenko-Schefer (TS) (DFT + D) was utilized to precisely correct the pairwise dispersion of the functionals. The electrical parameters were interpreted using the reciprocal space of the ultrasoft pseudopotential representation. To overcome the issues of self-electron interaction, the nonlocal hybrid functional with PBE0 method was utilized to calculate the electronic properties of the studied systems. The computations generated are predicated on a particular trajectory of the gamma k-point band energy interpolations proposed in this examination. An investigation into the position of adsorption came after geometric optimization. Adsorbed on an optimized Au/Fe surface, ZnO nanostructure was computationally explored using the Dmol3 simulation software.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Umar A, Akbar S, Kumar R, Amu-Darko JNO, Hussain S, Ibrahim AA, Alhamami MA, Almehbad N, Almas T, Seliem AF (2024) Ce-doped ZnO nanostructures: a promising platform for NO2 gas sensing. Chemosphere 349140838.https://doi.org/10.1016/j.chemosphere.2023.140838

  2. Sun Y, Hu J, Yuan D, Chen Y, Liu Y, Zhang Q, Chen W (2023) Hyperspectral classification of hazardous materials based on deep learning. Sustainability 15:7653. https://doi.org/10.3390/su15097653

    Article  CAS  Google Scholar 

  3. Bhati VS, Hojamberdiev M, Kumar M (2020) Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review. Energy Rep 6(4):46–62. https://doi.org/10.1016/j.egyr.2019.08.070

    Article  Google Scholar 

  4. El-Sayed DS (2023) Electronic band structure and density of state modulation of amphetamine and ABW type–zeolite adsorption system: DFT-CASTEP analysis. J Mol Model 29:96. https://doi.org/10.1007/s00894-023-05501-y

    Article  CAS  PubMed  Google Scholar 

  5. Mahmood WK, Rashid TM, Rahmah MI et al (2024) Empowering NO2 detection: synthesis of highly responsive Au/Cu-doped iron oxide nanoparticles as gas sensors through laser ablation. Plasmonics. https://doi.org/10.1007/s11468-024-02235-2

    Article  Google Scholar 

  6. Al-Majedy YK, Ibraheem HH, Issa AA, Alamiery A (2023) Exploring chromone derivatives as environmentally friendly corrosion inhibitors for mild steel in acidic environments: a comprehensive experimental and DFT study. Int J Corros Scale Inhib 12(3):1028–105

    CAS  Google Scholar 

  7. Dhiman P, Rana G, Kumar A et al (2022) ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review. Environ Chem Lett 20:1047–1081. https://doi.org/10.1007/s10311-021-01361-1

    Article  CAS  Google Scholar 

  8. Noman MT, Amor N, Petru M, Mahmood A, Kejzlar P (2021) Photocatalytic behaviour of zinc oxide nanostructures on surface activation of polymeric fibres. Polymers (Basel) 13(8):1227. https://doi.org/10.3390/polym13081227

    Article  CAS  PubMed  Google Scholar 

  9. Issa AA, Obayes HR (2020) Capture carcinogenic aromatic compounds by the design of new tweezer compounds: a theoretical study. J Mol Model 26:292. https://doi.org/10.1007/s00894-020-04558-3

    Article  CAS  PubMed  Google Scholar 

  10. Emara MM, Hafez ST, Khalil TE, Kashyout AB, El-Dissouky A, El-Sayed DS (2023) Electronic and structural perturbations of microporous ZIF-67 nanoparticles and Cr(VI) molecule during adsorptive water decontamination unveiled by experimental and quantum computational investigations. J Mol Liq 390:123042. https://doi.org/10.1016/j.molliq.2023.123042

    Article  CAS  Google Scholar 

  11. Arafat EA, El-Sayed DS, Hussein HK, Pouchon JF, Moussian B, El-Samad LM, El Wakil A, Hassan MA (2023) Entomotherapeutic role of Periplaneta americana extract in alleviating aluminum oxide nanoparticles-induced testicular oxidative impairment in migratory locusts (Locusta migratoria) as an ecotoxicological model. Antioxidants 12(3):653. https://doi.org/10.3390/antiox12030653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Issa AA, Ibraheem HH, El-Sayed DS (2024) Computational innovation of in situ metallic elements with zirconia as a novel possible carrier for chemotherapeutic medication. J Mol Model 30:14. https://doi.org/10.1007/s00894-023-05815-x

    Article  CAS  Google Scholar 

  13. Das BP, Nath TK, Mandal S et al (2023) Magnetic and optical properties of dilute magnetic semiconducting (In0.9Mn0.1)2O3 nanoparticles. J Electron Mater 52:5652–5661. https://doi.org/10.1007/s11664-023-10492-w

    Article  CAS  Google Scholar 

  14. Mahmood WK, Naje AN (2018) Fabrication of room temperature NO2 gas sensor based on silver nanoparticles-decorated carbon nanotubes. J Nano- Electron Phys 10(5). https://doi.org/10.21272/jnep.10(5).050203

  15. El-Sayed DS, Tawfik EM, Elhusseiny AF et al (2023) A perception into binary and ternary copper (II) complexes: synthesis, characterization, DFT modeling, antimicrobial activity, protein binding screen, and amino acid interaction. BMC Chemistry 17:55. https://doi.org/10.1186/s13065-023-00962-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elbadawy HA, Ali EA, Elkashef AA, Foro S, El-Sayed DS (2022) Zinc(II)-facilitated nucleophilic addition on N-(4-chlorophenyl) carbon hydrazonoyl dicyanide and hybrid complex formation: X-ray, spectral characteristics, DFT, molecular docking, and biological studies. ApplOrganomet Chem 36(9). https://doi.org/10.1002/aoc.6793

  17. Elhusseiny AF, El-Dissouky A, Mautner F, Tawfk EM, El-Sayed DS (2022) An insight into non-covalent interactions in binary, ternary and quaternary copper (II) complexes: synthesis, X-ray structure, DFT calculations, antimicrobial activity and molecular docking studies. Inorg Chim Acta 532:120748. https://doi.org/10.1016/j.ica.2021.120748

    Article  CAS  Google Scholar 

  18. Chaves A, Azadani JG, Alsalman H et al (2020) Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl 4:29. https://doi.org/10.1038/s41699-020-00162-4

    Article  CAS  Google Scholar 

  19. Naje AN, Mahmood WK (2018) Sensitivity performance of single wall carbon nanotubes gas sensor on silicon and porous silicon. IOP Conf Ser: Mater Sci Eng 454:012070. https://doi.org/10.1088/1757-899X/454/1/012070

    Article  Google Scholar 

  20. Sharma A, Khangarot RK, Chattopadhyay S, Misra KP, Misra RDK, Babu PD (2023) Band gap reduction and improved ferromagnetic ordering via bound magnetic polarons in Zn(Al, Ce)O nanoparticles. Mater Technol 38:1. https://doi.org/10.1080/10667857.2022.2151114

    Article  CAS  Google Scholar 

  21. Parashar M, Shukla VK, Singh R (2020) Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J Mater Sci: Mater Electron 31:3729–3749. https://doi.org/10.1007/s10854-020-02994-8

    Article  CAS  Google Scholar 

  22. Chavali MS, Nikolova MP (2019) Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 1:607. https://doi.org/10.1007/s42452-019-0592-3

    Article  CAS  Google Scholar 

  23. Tsuzuki T (2021) Mechanochemical synthesis of metal oxide nanoparticles. Commun Chem 4:143. https://doi.org/10.1038/s42004-021-00582-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maciulis V, Ramanaviciene A, Plikusiene I (2022) Recent advances in synthesis and application of metal oxide nanostructures in chemical sensors and biosensors. Nanomaterials 12:4413. https://doi.org/10.3390/nano12244413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diaz C, Valenzuela ML, Laguna-Bercero MÁ (2022) Solid-state preparation of metal and metal oxides nanostructures and their application in environmental remediation. Int J Mol Sci 23(3):1093. https://doi.org/10.3390/ijms23031093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Serrano-Bayona R, Chu C, Liu P, Roberts WLF (2023) Synthesis of carbon and metal-oxide nanoparticles: flame types, effects of combustion parameters on properties and measurement methods. Materials 16:1192. https://doi.org/10.3390/ma16031192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vu QT, Bondzior B, Stefańska D et al (2021) On how the mechanochemical and co-precipitation synthesis method changes the sensitivity and operating range of the Ba2Mg1-xEuxWO6 optical thermometer. Sci Rep 11:22847. https://doi.org/10.1038/s41598-021-02309-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ye Z, He H, Jiang Li (2018) Co-do**: an effective strategy for achieving stable p-type ZnO thin films. Nano Energy 52:527–540. https://doi.org/10.1016/j.nanoen.2018.08.001

    Article  CAS  Google Scholar 

  29. Hu Y, Su H, Zhu Z et al (2024) Environmentally benign techniques of lithium extraction from salt lakes: a review. Environ Chem Lett 22:105–120. https://doi.org/10.1007/s10311-023-01669-0

    Article  CAS  Google Scholar 

  30. Hassan M, Liang Z, Liu S, Hussain S, Qiao G, Liu G (2023) Temperature-driven n-to p-type transition of a chemiresistive NiO/CdS-CdO NO2 gas sensor. Sens Actuators B 398:134755. https://doi.org/10.1016/j.snb.2023.134755

    Article  CAS  Google Scholar 

  31. Saadi H, Rhouma FIH, Benzarti Z, Bougrioua Z, Guermazi S, Khirouni K (2020) Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater Res Bull 129:110884. https://doi.org/10.1016/j.materresbull.2020.110884

    Article  CAS  Google Scholar 

  32. Saadi H, Benzarti Z, Rhouma FIH et al (2021) Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe do** for electric storage applications. J Mater Sci: Mater Electron 32:1536–1556. https://doi.org/10.1007/s10854-020-04923-1

    Article  CAS  Google Scholar 

  33. Delley B (2000) From molecules to solids with the DMol3 approach. The Journal of Chemical Physics 113(18):7756–7764. https://doi.org/10.1063/1.1316015

  34. Sayed DSE, Abdelrehim ESM (2022) Spectroscopic details on the molecular structure of pyrimidine-2-thiones heterocyclic compounds: computational and antiviral activity against the main protease enzyme of SARS-CoV-2. BMC Chem 16:82. https://doi.org/10.1186/s13065-022-00881-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Al-Majedy YK, Ibraheem HH, Issa AA (2023) Antioxidant, antimicrobial activity and quantum chemical studies of 4-methyl-7-hyroxy coumarin derivatives. AIP Conf Proc 2593:060002. https://doi.org/10.1063/5.0113038

    Article  CAS  Google Scholar 

  36. El-Sayed DS, El badawy HA, Khalil TE (2022) Rational modulation of N and O binding in Fe(III) complex formation derived from hydroxychloroquine: synthesis, spectroscopic, computational, and docking simulation with human thrombin plasma. J Mol Struct 1254:132268. https://doi.org/10.1016/j.molstruc.2021.132268

    Article  CAS  Google Scholar 

  37. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Krist – Cryst Mater 220(5–6):567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  38. Pugliese A, Tobyn M, Hawarden LE, Abraham A, Blanc F (2022) New development in understanding drug-polymer interactions in pharmaceutical amorphous solid dispersions from solid-state nuclear magnetic resonance. Mol Pharmaceutics 19(11):3685–3699. https://doi.org/10.1021/acs.molpharmaceut.2c00479

    Article  CAS  Google Scholar 

  39. Elessawy NA, Exley J, El-Sayed DS, Toghan A, Al-Hussain SA, Elzokm M, Konsowa AH, Tillotson M (2024) Development of an efficient, low-operating-pressure graphene oxide/polyethersulfone nanofiltration membrane for removing various water contaminants. J Environ Chem Eng 12:112489. https://doi.org/10.1016/j.jece.2024.112489

    Article  CAS  Google Scholar 

  40. Khan ME, Mohammad A, Ali W, Imran M, Bashiri AH, Zakri W (2023) 2 - Properties of metal and metal oxides nanocomposites, nanocomposites-advanced materials for energy and environmental aspects. Woodhead Publishing, pp 23–39. https://doi.org/10.1016/B978-0-323-99704-1.00027-8

    Book  Google Scholar 

  41. Yang J, Falletta S, Pasquarello A (2023) Range-separated hybrid functionals for accurate prediction of band gaps of extended systems. npj Comput Mater 9:108. https://doi.org/10.1038/s41524-023-01064-x

    Article  CAS  Google Scholar 

  42. Duarte TM, Buzolin PGC, Santos IMG et al (2016) Choice of hybrid functional and basis set optimization to calculate the structural, electronic, mechanical, and vibrational properties of BaSnO3. Theor Chem Acc 135:151. https://doi.org/10.1007/s00214-016-1901-1

    Article  CAS  Google Scholar 

  43. Al-Majedy YK, Ibraheem HH, Issa AA, Jabir MS, Hasoon BA, Al-Shmgani HS (2024) Sulaiman GM Synthesis, biomedical activities, and molecular docking study of novel chromone derivatives. J Mol Struct 1295(1):136647. https://doi.org/10.1016/j.molstruc.2023.136647

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our great thanks and gratitude to the Mustansiriyah University, Baghdad, Iraq, for the assistance it provided in completing this research.

Author information

Authors and Affiliations

Authors

Contributions

Waleed K. Mahmood: investigation, validation, writing—original draft. Ghaith Yousif Dakhal: validation, data curation, writing—original draft. Dhurgham Younus: methodology, formal analysis, writing—review and editing. Ali Abdullah Issa: Supervision, investigation, validation, data curation, writing—original draft. Doaa S. El-Sayed: resources, methodology, formal analysis, conceptualization, writing—review and editing.

Corresponding author

Correspondence to Doaa S. El-Sayed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, W.K., Dakhal, G.Y., Younus, D. et al. Comparative properties of ZnO modified Au/Fe nanocomposite: electronic, dynamic, and locator annealing investigation. J Mol Model 30, 165 (2024). https://doi.org/10.1007/s00894-024-05956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05956-7

Keywords

Navigation