Log in

4a,4b-Dihydrophenanthrene → cis-stilbene photoconversion: TD-DFT/DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

DHP → CS photoconversion was analyzed in terms of electron density redistribution for the first time. The following explanation for the non-recovery of the C4a-C4b bond upon CS relaxation is proposed: during this process, the Coulomb repulsion energy between these pairs of atoms increases by almost one and a half times, and their bonding by an electron at LUMO is insufficient to recover the C4a-C4b bond. According to calculations, upon CS relaxation, the linker connecting the benzene rings undergoes significant structural changes. In this case, the distance between the C4a and C4b atoms increases from 3.00 Å to 3.28 Å. Calculations showed that the C4a-C4b vibration of the DHP bond has a very low intensity. Therefore, thermal motion does not contribute to the rupture of this bond.

Methods

All calculations were performed using the Gaussian16 software package at the B3LYP/6–311 +  + G(d,p)/IEFPCM theory level. B3LYP was the only hybrid functional supported by Gaussian16, which ensured the cleavage of the C4a-C4b bond of DHP while optimizing its S1 excited state. A quantitative description of the redistribution of electron density in the studied conformers was carried out using the analysis of the NPA of atomic charges. Cyclohexane was used as an implicitly specified non-polar solvent. Visualization of molecular orbitals, and electron densities, as well as plotting of calculated IR spectra, were performed using the Gaussview6 software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Lewis GN, Magel TT, Lipkin D (1940) The absorption and re-emission of light by cis-and trans-stilbenes and the efficiency of their photochemical isomerization. J Am Chem Soc 62:2973–2980

    Article  CAS  Google Scholar 

  2. Hammond GS, Saltiel J, Lamola AA, Turro NJ, Bradshaw JS, Cowan DO, Counsel RS, Vogt V, Dalton C (1964) Mechanisms of photochemical reactions in solution. XXII. Photochemical cis-trans isomerization. J Am Chem Soc 86:3197–3217

    Article  CAS  Google Scholar 

  3. Muszkat KA, Fischer E (1967) Structure, spectra, photochemistry, and thermal reactions of the 4a,4b-dihydrophenanthrenes. J Chem Soc B:662–678

  4. Clark AE (2006) Time-dependent density functional theory studies of the photoswitching of the two-photon absorption spectra in stilbene, metacyclophenadiene, and diarylethene chromophores. J Phys Chem A 110:3790–3796

    Article  CAS  PubMed  Google Scholar 

  5. Sauer P, Allen RE (2007) Dynamics of the photoinduced ring-opening of stilbene, a prototypical diarylethene. Chem Phys Lett 434:260–264

    Article  CAS  Google Scholar 

  6. Nakamura S, Irie M (1988) Thermally irreversible photochromic systems. A theoretical study. J Org Chem 53:6136–6138

    Article  CAS  Google Scholar 

  7. Baker J, Wolinski K (2011) Isomerization of stilbene using enforced geometry optimization. J Comput Chem 32:43–53

    Article  CAS  PubMed  Google Scholar 

  8. Chaudhuri RK, Freed KF, Chattopadhyay S, Mahapatra US (2013) Theoretical studies of the ground and excited state structures of stilbene. J Phys Chem A 117:9424–9434

    Article  CAS  PubMed  Google Scholar 

  9. Raucci U, Weir H, Bannwarth C, Sanchez DM, Martinez TJ (2022) Chiral photochemistry of achiral molecules. Nature Commun 13:2091

    Article  CAS  Google Scholar 

  10. Muszkat A, Eisenstein M, Fischer E, Wagner A, Ittah Y, Jakob A, Luttke W (1997) Stereoisomerism of 4a,4b-dihydrophenanthrenes. J Photochem Photobiol A 105:205–207

    Article  CAS  Google Scholar 

  11. Muszkat KA, Eisenstein M, Fischer E, Wagner A, Ittah Y, Luttke W (1997) The two conformations of hindered photochromic 4a,4b-dihydrophenanthrenes. J Am Chem Soc 119:9351–9360

    Article  CAS  Google Scholar 

  12. Zhou X, Liu R (1992) Geometry, force field, and fundamental frequencies of 4a,4b-dihydrophenanthrene, a scaled quantum-mechanical force field study. Chem Phys Lett 191:477–482

    Article  CAS  Google Scholar 

  13. Negri F, Orlandi G (1992) Theoretical analysis of the force field and resonance Raman spectrum of 4a,4b-dihydrophenanthrene. Chem Phys Lett 195:523–530

    Article  CAS  Google Scholar 

  14. Leonard JD, Gustafson TL (1996) The 211 nm excited resonance Raman spectra of trans-stilbene and related molecules. J Mol Structure 379:109–120

    Article  CAS  Google Scholar 

  15. Gelmont B, Chen Y, **e Z, Luo Y, Jensen JO (2010) Stilbene and its derivatives for multistate spectral sensing. IEEE Trans Nanotechnol 9:558–564

    Article  Google Scholar 

  16. Herkstroeter WG, McClure DS (1968) The lowest triplet state of stilbene. J Am Chem Soc 90:4522–4527

    Article  CAS  PubMed  Google Scholar 

  17. Petek H, Yoshihara K, Fujiwara Y, Frey JG (1990) Isomerization of cis-stilbene in rare-gas clusters: direct measurements of trans-stilbene formation rates on a picosecond time scale. J Opt Soc Am B 7:1540–1544

    Article  CAS  Google Scholar 

  18. Saltiel J, Waller AS, Sears DF (1992) Dynamics of cis-stilbene photoisomerization: the adiabatic pathway to excited trans-stilbene. J Photochem Photobiol A 65:29–40

    Article  CAS  Google Scholar 

  19. Saltiel J, Waller AS, Sears DF (1993) The temperature and medium dependencies of cis-stilbene fluorescence. The energetics for twisting in the lowest excited singlet state. J Am Chem Soc 115:2453–2465

    Article  CAS  Google Scholar 

  20. Phillips DL, Rodier J-M, Myers AB (1993) Cis-stilbene photochemistry: direct observation of product formation and relaxation through two-color UV pump-probe Raman spectroscopy. Chem Phys 175:1–12

    Article  CAS  Google Scholar 

  21. Baumert T, Frohnmeyer T, Kiefer B, Niklaus P, Strehle M, Gerber G, Zewail AH (2001) Femtosecond transition state dynamics of cis-stilbene. Appl Phys B 72:105–108

    Article  Google Scholar 

  22. Ishii K, Takeuchi S, Tahara T (2004) A 40-fs time-resolved absorption study on cis-stilbene in solution: observation of wavepacket motion on the reactive excited state. Chem Phys Lett 398:400–406

    Article  CAS  Google Scholar 

  23. Takeuchi S, Ruhman S, Tsuneda T, Chiba M, Taketsugu T, Tahara T (2008) Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322:1073–1077

    Article  CAS  PubMed  Google Scholar 

  24. Weigel A, Ernsting NP (2010) Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated raman spectroscopy. J Phys Chem B 114:7879–7893

    Article  CAS  PubMed  Google Scholar 

  25. Sajadi M, Dobryakov AL, Garbin E, Ernsting NP, Kovalenko SA (2010) Time-resolved fluorescence spectra of cis-stilbene in hexane and acetonitrile. Chem Phys Lett 489:44–47

    Article  CAS  Google Scholar 

  26. Nguyen SC, Lomont JP, Caplins BW, Harris CB (2014) Studying the dynamics of photochemical reactions via ultrafast time-resolved infrared spectroscopy of the local solvent. J Phys Chem Lett 5:2974–2978

    Article  CAS  PubMed  Google Scholar 

  27. de Wergifosse M, Houk AL, Krylov AI, Elles CG (2017) Two-photon absorption spectroscopy of trans-stilbene, cis-stilbene, and phenanthrene: theory and experiment. J Chem Phys 146:144305

    Article  PubMed  Google Scholar 

  28. Saltiel J, Gupta S (2018) Photochemistry of the stilbenes in methanol. Trap** the common phantom singlet state. J Phys Chem A 122:6089–6099

    Article  CAS  PubMed  Google Scholar 

  29. van den Berg JL, Neumann KI, Harrison JA, Weir H, Hohenstein EG, Martinez TJ, Zare RN (2020) Strong, nonresonant radiation enhances Cis-Trans photoisomerization of stilbene in solution. J Phys Chem A 124:5999–6008

    Article  PubMed  Google Scholar 

  30. Todd DC, Fleming GR, Jean JM (1992) Calculations of absorption and emission spectra: a study of cis-stilbene. J Chem Phys 97:8915–8925

    Article  CAS  Google Scholar 

  31. Quenneville J, Martinez TJ (2003) Ab initio study of Cis-Trans photoisomerization in stilbene and ethylene. J Phys Chem A 107:829–837

    Article  CAS  Google Scholar 

  32. Dou Y, Allen RE (2003) Detailed dynamics of a complex photochemical reaction: cis–trans photoisomerization of stilbene. J Chem Phys 119:10658–10666

    Article  CAS  Google Scholar 

  33. Minezawa N, Gordon MS (2011) Photoisomerization of stilbene: a spin-flip density functional theory approach. J Phys Chem A 115:7901–7911

    Article  CAS  PubMed  Google Scholar 

  34. Ioffe IN, Granovsky AA (2013) Photoisomerization of stilbene: the detailed XMCQDPT2 treatment. J Chem Theory Comput 9:4973–4990

    Article  CAS  PubMed  Google Scholar 

  35. Jiang C-W, Zhou X, **e R-H, Li F-L (2013) Semiclassical molecular dynamics simulations for ultrafast processes in molecules. Quantum Matter 2:1–11

    Article  Google Scholar 

  36. Harabuchi Y, Keipert K, Zahariev F, Taketsugu T, Gordon MS (2014) Dynamics simulations with spin-flip time-dependent density functional theory: photoisomerization and photocyclization mechanisms of cis-stilbene in Ππ* states. J Phys Chem A 118:11987–11998

    Article  CAS  PubMed  Google Scholar 

  37. Neukirch AJ, Shamberger LC, Abad E, Haycock BJ, Wang H, Ortega J, Prezhdo OV, Lewis JP (2014) Nonadiabatic ensemble simulations of cis-stilbene and cis-azobenzene photoisomerization. J Chem Theory Comput 10:14–23

    Article  CAS  PubMed  Google Scholar 

  38. Park JW, Shiozaki T (2017) Analytical derivative coupling for multistate CASPT2 theory. J Chem Theory Comput 13:2561–2570

    Article  CAS  PubMed  Google Scholar 

  39. Weir H, Williams M, Parrish RM, Hohenstein EG, Martínez TJ (2020) Nonadiabatic dynamics of photoexcited cis-stilbene using Ab initio multiple spawning. J Phys Chem B 124:5476–5487

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, ** dynamics simulations. Chem Phys 539:110957

    Article  CAS  Google Scholar 

  41. Williams M, Forbes R, Weir H, Veyrinas K, MacDonell RJ, Boguslavskiy AE, Schuurman MS, Stolow A, Martinez TJ (2021) Unmasking the cis-stilbene phantom state via vacuum ultraviolet time-resolved photoelectron spectroscopy and Ab initio multiple spawning. J Phys Chem Lett 12:6363–6369

    Article  CAS  PubMed  Google Scholar 

  42. Tsutsumi T, Ono Y, Taketsugu T (2022) Multi-state energy landscape for photoreaction of stilbene and dimethyl-stilbene. J Chem Theory Comput 18:7483–7495

    Article  CAS  PubMed  Google Scholar 

  43. Malory FB, Wood CS, Gordon JT (1964) Photochemistry of stilbenes. III. Some aspects of the mechanism of photocyclization to phenanthrenes. J Am Chem Soc 86:3094–3102

    Article  Google Scholar 

  44. Bromberg KA, Muszkat E (1972) Fischer, photocyclisation and photocyclodehydrogenation of stilbene and related compounds. Isr J Chem 10:765–773

    Article  CAS  Google Scholar 

  45. Repinec ST, Sension RJ, Szarka AZ, Hochstrasser RM (1991) femtosecond laser studies of the cis-stilbene photoisomerization reactions. The cis-stilbene to dihydrophenanthrene reaction. J Phys Chem 95:10380–10385

    Article  CAS  Google Scholar 

  46. Rodier J-M, Ci X, Myers AB (1991) Resonance Raman spectra of 4a,4b-dihydrophenanthrene, the photocyclization product of cis-stilbene. Chem Phys Lett 23:55–62

    Article  Google Scholar 

  47. Rodier J-M, Myers AB (1993) cis-stilbene photochemistry: solvent dependence of the initial dynamics and quantum yields. J Am Chem Soc 115:10791–10795

    Article  CAS  Google Scholar 

  48. Greenfield M, McGrane SD, Moore DS (2009) Control of cis-stilbene photochemistry using shaped ultraviolet pulses. J Phys Chem A 113:2333–2339

    Article  CAS  PubMed  Google Scholar 

  49. Jiang C-W, **e R-H, Li F-L, Allen RE (2010) Photocyclization of trans-stilbene induced by an ultrafast laser pulse. Chem Phys Lett 487:177–182

    Article  CAS  Google Scholar 

  50. Bao J, Weber PM (2011) Electronic effects on photochemistry: the diverse reaction dynamics of highly excited stilbenes and azobenzene. J Am Chem Soc 133:4164–4167

    Article  CAS  PubMed  Google Scholar 

  51. Bao J, Minitti MP, Weber PM (2011) Ring-closing and dehydrogenation reactions of highly excited cis-stilbene: ultrafast spectroscopy and structural dynamics. J Phys Chem A 115:1508–1515

    Article  CAS  PubMed  Google Scholar 

  52. Muszkat KA, Schmidt W (1971) Energy profiles for ring formation-and ring opening-processes in the cis-stilbene-4a,4b-dihydrophenanthrene system. An example of the feasibility of a process forbidden by the rules of orbital symmetry conservation. Helv Chim Acta 54:1195–1207

    Article  CAS  Google Scholar 

  53. Bearpark MJ, Bernardi F, Clifford S, Olivucci M, Robb MA, Vreven T (1997) Cooperating rings in cis-stilbene Lead to an S0/S1 conical intersection. J Phys Chem A 101:3841–3847

    Article  CAS  Google Scholar 

  54. Dou Y, Allen RE (2004) Dynamics of the photocyclization of cis-stilbene to dihydrophenanthrene. J Modern Optics 51:2485–2491

    Article  CAS  Google Scholar 

  55. Karashima S, Miao X, Kanayama A, Yamamoto Y, Nishitani J, Kavka N, Mitric R, Suzuki T (2023) Ultrafast ring closure reaction of gaseous cis-stilbene from S1(ππ*). J Am Chem Soc 145:3283–3288

    Article  CAS  PubMed  Google Scholar 

  56. Somers JBM, Couture A, Lablache-Combier A, Laarhoven WH (1985) Base-induced proton tautomerism in the primary photocyclization product of stilbenes. J Am Chem Soc 107:1387–1394

    Article  CAS  Google Scholar 

  57. Dobrovolskiy IN, Kostjukov VV (2023) TD-DFT study of BIPS spiropyran: effects of functionals and high-polarity solvent on Cspiro−O bond dissociation and recovery. J Comput Chem 44:1928–1940

    Article  CAS  PubMed  Google Scholar 

  58. Dobrovolskiy IN, Kostjukov VV (2023) The influence of the nitro group on the cspiro-O bond dissociation and recovery in spiropyrans: a comparative theoretical analysis of 6-nitro-BIPS and BIPS. J Photochem Photobiol A 445:115098

    Article  CAS  Google Scholar 

  59. Charaf-Eddin A, Planchat A, Mennucci B, Adamo C, Jacquemin D (2013) Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J Chem Theory Comput 9:2749–2760

    Article  CAS  PubMed  Google Scholar 

  60. Gaussian 16, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

  61. Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  62. Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Structure 464:211–226

    Article  CAS  Google Scholar 

  63. Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856

    Article  CAS  PubMed  Google Scholar 

  64. Wiberg KB, Stratmann RE, Frisch MJ (1998) A time-dependent density functional theory study of the electronically excited states of formaldehyde, acetaldehyde and acetone. Chem Phys Lett 297:60–64

    Article  CAS  Google Scholar 

  65. Cossi M, Barone V (2000) Solvent effect on vertical electronic transitions by the polarizable continuum model. J Chem Phys 112:2427–2435

    Article  CAS  Google Scholar 

  66. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125:054103

    Article  PubMed  Google Scholar 

  67. Improta R, Scalmani G, Frisch MJ, Barone V (2007) Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. J Chem Phys 127:074504

    Article  PubMed  Google Scholar 

  68. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  69. GaussView, Version 6.1, Dennington R, Keith TA, Millam JM (2016) Semichem Inc., Shawnee Mission, KS

  70. Niziński S, Wendel M, Rode MF, Prukała D, Sikorski M, Wybraniec S, Burdziński G (2017) Photophysical properties of betaxanthins: miraxanthin V-insight into the excited-state deactivation mechanism from experiment and computations. RSC Adv 7:6411–6421

    Article  Google Scholar 

  71. Sobolewski AL (2008) Reversible molecular switch driven by excited-state hydrogen transfer. Phys Chem Chem Phys 10:1243–1247

    Article  CAS  PubMed  Google Scholar 

  72. Rode MF, Sobolewski AL (2010) Effect of chemical substituents on the energetical landscape of a molecular photoswitch: an ab initio study. J Phys Chem A 114:11879–11889

    Article  CAS  PubMed  Google Scholar 

  73. Rode MF, Sobolewski AL (2008) Photophysics of inter-and intra-molecularly hydrogen-bonded systems: computational studies on the pyrrole–pyridine complex and 2 (2′-pyridyl) pyrrole. Chem Phys 347:413–421

    Article  CAS  Google Scholar 

  74. Vetokhina V, Nowacki J, Pietrzak M, Rode MF, Sobolewski AL, Waluk J, Herbich J (2013) 7-Hydroxyquinoline-8-carbaldehydes. 1. Ground-and excited-state long-range prototropic tautomerization. J Phys Chem A 117:9127–9146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Supercomputing Center of Sevastopol State University for providing computing resources.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Elizaveta V. Savchenko - study conception and design, data collection; Victor V. Kostjukov - analysis and interpretation of results, manuscript preparation.

Corresponding author

Correspondence to Victor V. Kostjukov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2883 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenko, E.V., Kostjukov, V.V. 4a,4b-Dihydrophenanthrene → cis-stilbene photoconversion: TD-DFT/DFT study. J Mol Model 30, 24 (2024). https://doi.org/10.1007/s00894-023-05824-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05824-w

Keywords

Navigation