Log in

Investigation of thermoelectric properties of cadmium selenide CdnSen (n= 7, 11, 13) molecular junctions: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The thermoelectric properties of cadmium selenide (CdnSen) molecular junctions (n = 7, 11, 13) were investigated before and after adding hydrogen atoms. The effects of hydrogen passivation on the transmission and thermopower curves were analyzed. CdSe-diamantane (Cd7Se7) and CdSe-tetramantane (Cd11Se11) junctions exhibited the best thermoelectric performance due to their low surface reconstruction energy, which is attributed to the number of dangling and unsaturated bonds. This study guides the design of new molecular junctions with desired thermoelectric properties.

Method

The electrical and thermal properties of cadmium selenide (CdnSen) molecular junctions (n = 7, 11, 13) were investigated using a ballistic quantum transport method based on the non-equilibrium Green’s function (NEGF) approach. Thermoelectric properties were calculated for the molecular junctions with different structures before and after hydrogen passivation. Density functional theory (DFT) calculations were performed at the B3LYP level with the 3-21G basis set for the Cd atoms and the 6-31G** basis set for the Se atoms. The SIESTA and GOLLUM codes were used to study the effect of changing the shape and size of each structure on its electrical and thermal characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hurtado-Gallego J, Sangtarash S, Davidson R, Rincón-Garcí L, Daaoub A, Rubio-Bollinger G, Lambert CJ, Oganesyan VS, Bryce MR, Agraït N, Sadeghi H (2022) Thermoelectric enhancement in single organic radical molecules. Nano Lett. https://doi.org/10.1021/acs.nanolett.1c03698

  2. Spièce J, Sangtarash S, Mucientes M, Molina-Mendoza AJ, Lulla K, Mueller T, Kolosov OV, Sadeghi H, Evangeli C (2022) Low thermal conductivity in franckeite heterostructures. Nanoscale. https://doi.org/10.1039/D1NR07889E

    Article  PubMed  Google Scholar 

  3. Deb J, Mondal R, Sarkar U, Sadeghi H (2021) Thermoelectric properties of pristine graphyne and the bn-doped graphyne family. ACS Omega 6(31):20149–20157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Su L, Wang D, Wang S, Qin B, Wang Y, Qin Y, ** Y, Chang C, Zhao LD (2022) High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 375(6587):1385–1389. https://doi.org/10.1126/science.abn8997

    Article  CAS  PubMed  Google Scholar 

  5. de Mello Donega C (2011) Synthesis properties of colloidal heteronanocrystals. Chem Soc Rev 40:1512–1546. https://doi.org/10.1039/C0CS00055H

    Article  PubMed  Google Scholar 

  6. Peter YU, Cardona M (2004) Fundamentals of Semiconductors: physics and materials properties, 3rd edn. Springer

  7. Baskoutas S, Terzis AF (2006) Size-dependent band gap of colloidal quantum dots. J Appl Physics 99:013708. https://doi.org/10.1063/1.2158502

    Article  CAS  Google Scholar 

  8. Guo Z, Tan L (2009) Fundamentals and applications of nanomaterials. Artech House, Boston, London

  9. Zhou Z, Huang Y, Wei B, Yang Y, Yu D, Zheng Y, He D, Zhang W, Zou M, Lan JL, He J, Nan CW, Li YH (2023) Compositing effects for high thermoelectric performance of Cu2Se-based materials. Nat Commun 14(1):2410. https://doi.org/10.1016/j.jmat.2018.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sadeghi H, Sangtarash S, Lambert CJ (2015) Oligoyne molecular junctions for efficient room temperature thermoelectric power generation. Nano Lett 15(11):7467–7472. https://doi.org/10.1016/j.jmat.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Ricci F, Chen W, Aydemir U, Snyder GJ, Rignanese GM, Jain A, Hautier G (2017) An ab initio electronic transport database for inorganic materials. Scientific data 4(1):1–13

    Article  Google Scholar 

  12. Al-Galiby QH, Sadeghi H, Algharagholy LA, Grace I, Lambert C (2016) Tuning the thermoelectric properties of metallo-porphyrins. Nanoscale 8(4):2428–2433. https://doi.org/10.1039/C5NR06966A

    Article  CAS  PubMed  Google Scholar 

  13. Page A, Van der Ven A, Poudeu PFP, Uher C (2016) Origins of phase separation in thermoelectric (Ti, Zr, Hf) NiSn half-Heusler alloys from first principles. J Mater Chem A 4(36):13949–13956. https://doi.org/10.1039/C6TA04957E

    Article  CAS  Google Scholar 

  14. Abed HH, Abduljalil HM, Abdulsattar MA (2018) Structural, optical and humidity sensitivity for CdSe nanocrystalline thin films. J Adv Pharm Edu Res 8(4):25–31

    CAS  Google Scholar 

  15. Sigalas MM, Koukaras EN, Zdetsis AD (2014) Size dependence of the structural, electronic, and optical properties of (CdSe)n, n = 6–60. Nanocrystals RSC Adv 4:14613–14623. https://doi.org/10.1039/C4RA00966E

    Article  CAS  Google Scholar 

  16. Gutsev LG, Dalal NS, Ramachandran BR, Weatherford CA, Gutsev GL (2015) Spectral signatures of semiconductor clusters: (CdSe)16 isomers. Chem Phys Lett 636:121–128. https://doi.org/10.1016/j.cplett.2015.07.024

    Article  CAS  Google Scholar 

  17. Sun J, Zheng X, He H, Chen X, Dong B, Fei R (2016) Theoretical study of ligand and solvent effects on optical properties and stabilities of CdSe nanoclusters. J Mol Struct 1114:123–131. https://doi.org/10.1016/j.molstruc.2016.02.068

    Article  CAS  Google Scholar 

  18. Kasuya A, Sivamohan R, Barnakov YA, Dmitruk IM, Nirasawa T, Romanyuk VR, Kumar V, Mamykin AV, Tohji K, Jeyadevan B, Shinoda K, Kudo T, Terasaki O, Liu Z, Melosludov RV, Sundararajan V, Kawazoe Y (2004) Ultrastable nanoparticles of CdSe revealed from mass spectrometry. Nat Mater 3:99–102. https://doi.org/10.1038/nmat1056

    Article  CAS  PubMed  Google Scholar 

  19. Kasuya A, Noda Y, Dmitruk I, Romanyuk V, Barnakov Y, Tohji K, Kumar V, Melosludov R, Kawazoe Y, Ohuchi N (2005) Stoichiometric and ultra-stable nanoparticles of II-VI compound semiconductors. Eur Phys J D 34:39–41. https://doi.org/10.1140/epjd/e2005-00114-9

    Article  CAS  Google Scholar 

  20. Wingert WS (1992) GC-MS analysis of diamondoid hydrocarbons in smackover petroleums. Fuel 71:37–43. https://doi.org/10.1016/0016-2361(92)90190-Y

    Article  CAS  Google Scholar 

  21. Abdulsattar MA (2015) Molecular approach to hexagonal and cubic diamond nanocrystals. Carbon Lett 16:192–197. https://doi.org/10.5714/CL.2015.16.3.192

    Article  Google Scholar 

  22. Abdulsattar MA, Mohammed IS (2014) Diamondoids and large unit cell method as building blocks of InAs nanocrystals: a density functional theory study. Comput Mater Sc 91:11–14. https://doi.org/10.1016/j.commatsci.2014.04.029

    Article  CAS  Google Scholar 

  23. Abdulsattar MA (2015) Capped ZnO (3,0) nanotubes as building blocks of bare and H passivated wurtzite ZnO nanocrystals. Superlattice Microst 85:813–819. https://doi.org/10.1016/j.spmi.2015.07.015

    Article  CAS  Google Scholar 

  24. Abed HH, Merdan M, Abdulsattar MA, Abduljalil HM, Hashim A (2023) Structural, Electronic, and UV–Vis Properties for Cd11-nZnnTe11with (n = 0,2–5,11) Nanostructures: a DFT and TDDFT study. J Electron Materia 52(3):2193–2200. https://doi.org/10.1007/s11664-022-10191-y

    Article  CAS  Google Scholar 

  25. Saravanamoorthy SN, Peter AJ, Lee CW (2017) Optical peak gain in a PbSe/CdSe core-shell quantum dot in the presence of magnetic field for mid-infrared laser applications. Chem Phys 483–484:1–6. https://doi.org/10.1016/j.chemphys.2016.11.002

    Article  CAS  Google Scholar 

  26. Santhosh TCM, Bangera KV, Shivakumar GK (2017) “Synthesis and bandgap tuning in CdSe(1–x)Te(x) thin films for solar cell applications” Sol. Energy 153:343–347. https://doi.org/10.1016/j.solener.2017.05.079

    Article  CAS  Google Scholar 

  27. Sque SJ, Jones R, Briddon PR (2006) Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys Rev B 73:085313. https://doi.org/10.1103/PhysRevB.73.085313

    Article  CAS  Google Scholar 

  28. Abdulsattar MA, Abduljalil HM, Abed HH (2019) Structure, stability and vibrational properties of CdSe wurtzite molecules and nanocrystals: a DFT study. Karbala Int J Mod Sci 5:119-125. https://doi.org/10.33640/2405-609X.1104

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT

  30. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order- N materials simulation. J Phys Condens Matter 14:2745–2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  31. Artacho E, Anglada E, Diéguez O, Gale JD, García A, Junquera J, Martin RM, Ordejón P, Pruneda JM, Sánchez-Portal D, Soler JM (2008) The SIESTA method; developments and applicability. J Phys Condens Matter 20:64208. https://doi.org/10.1088/0953-8984/20/6/064208

    Article  CAS  Google Scholar 

  32. Ferrer J, Lambert CJ, García-Suárez VM, Manrique DZ, Visontai D, Oroszlany L, Rodríguez-Ferradás R, Grace I, Bailey SWD, Gillemot K, Sadeghi H (2014) GOLLUM: a next-generation simulation tool for electron, thermal and spin transport. New J Phys 16:93029. https://doi.org/10.1088/1367-2630/16/9/093029

    Article  Google Scholar 

  33. Al-Khaykanee MK, Ismael AK, Grace I, Lambert CJ (2018) Oscillating Seebeck coefficients in π-stacked molecular junctions. RSC Adv 8(44):24711–24715. https://doi.org/10.1039/C8RA04698K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Al-Khaykanee MK, Al-Temimei FA, Al-Jobory AA, Sabur DA, Abbood HI (2019) Thermoelectric properties of platinum metal complexes. AIP Conf Proc 2144(1):030020. https://doi.org/10.1063/1.5123090

    Article  CAS  Google Scholar 

  35. Abdulsattar MA, Abduljalil HM, Abed HH (2019) Formation energies of CdSe wurtzoid and diamondoid clusters formed from Cd and Se atomic clusters. Calphad 64:37–42. https://doi.org/10.1016/j.calphad.2018.11.008

    Article  CAS  Google Scholar 

  36. Al-Galiby QH, Sadeghi H, Manriquec DZ, Lambert CJ (2017) Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and do**. Nanoscale 9:4819–4825. https://doi.org/10.1039/C7NR00571G

    Article  CAS  PubMed  Google Scholar 

  37. Vezzoli A, Brooke RJ, Ferri N, Higgins SJ, Schwarzacher W, Nichols RJ (2017) Single-molecule transport at a rectifying GaAs contact. Nano Lett 17(2):1109–1115. https://doi.org/10.1021/acs.nanolett.6b04663

    Article  CAS  PubMed  Google Scholar 

  38. Mani J, Kumar NR, Radhakrishnan R, Anbalagan G (2020) Thermoelectric properties of CdTe materials: DFT study. In AIP Conference Proceedings 2265 AIP Publishing. https://doi.org/10.1063/5.0016968

  39. Kepenekian M, Novaes FD, Robles R, Monturet S, Kawai H, Joachim CH, Lorente N (2013) Electron transport through dangling-bond silicon wires on H-passivated Si(100). J Phys Condens Matter 25:025503. https://doi.org/10.1088/0953-8984/25/2/025503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors regarded the University of Babylon for its support in achieving this work.

Author information

Authors and Affiliations

Authors

Contributions

Hussein H. Abed and Mohsin K. Al-Khaykanee wrote the main text, and Hayder M. Abduljalil and Mudar A. Abdulsattar reviewed the manuscript.

Corresponding authors

Correspondence to Hussein Hakim Abed or Mohsin K. Al-Khaykanee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, H.H., Al-Khaykanee, M.K., Abduljalil, H.M. et al. Investigation of thermoelectric properties of cadmium selenide CdnSen (n= 7, 11, 13) molecular junctions: a DFT study. J Mol Model 30, 12 (2024). https://doi.org/10.1007/s00894-023-05805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05805-z

Keywords

Navigation