Log in

Prediction of ionic conductivity from adiabatic heating in non-equilibrium molecular dynamics on various test systems

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The evaluation of ionic conductivity through atomistic modeling typically involves calculating diffusion coefficients, which often necessitates simulations spanning several hundreds of nanoseconds. This study introduces a less computationally demanding approach based on non-equilibrium molecular dynamics applicable to a wide range of systems.

Method

Ionic conductivity is determined by evaluating the Joule heating effect recorded during non-equilibrium molecular dynamics (NEMD) simulations. These simulations which involve applying a uniform electric field using classical force fields in LAMMPS are conducted within the MedeA software environment. The conductivity value for a specific temperature can thus be obtained from a single simulation together with an estimation of the associated uncertainty. Guidelines for selecting NEMD parameters such as electric field intensity and initial temperature are proposed to satisfy linear irreversible transport.

Results

The protocol presented in this study is applied to four different types of systems, namely, (i) molten NaCl, (ii) NaCl and LiCl aqueous solutions, (iii) solution of ionic liquid with two solvents, and (iv) NaX zeolites in the anhydrous and hydrated states. The main advantages of the proposed protocol are simplicity of implementation (eliminating the need to store individual ion trajectories), reliability (low electric field, linear response, no perturbation of the equations of motion by a thermostat), and a wide range of applications. The estimated contribution of field-induced drift motion of ions to kinetic energy appears very low, justifying the use of standard kinetic energy in the method. For each system, the reported influence of temperature, ion concentration, solvent nature, or hydration is correctly predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Ji Y, Zhang Y, Wang C-Y (2013) Li-ion cell operation at low temperatures. J Electrochem Soc 160:A636. https://doi.org/10.1149/2.047304jes

    Article  CAS  Google Scholar 

  2. Qi Z, Koenig GM (2017) Review article: flow battery systems with solid electroactive materials. J Vac Sci Technol B 35:040801. https://doi.org/10.1116/1.4983210

    Article  CAS  Google Scholar 

  3. Hemmatifar A, Ramachandran A, Liu K et al (2018) Thermodynamics of ion separation by electrosorption. Environ Sci Technol 52:10196–10204. https://doi.org/10.1021/acs.est.8b02959

    Article  CAS  PubMed  Google Scholar 

  4. Varhaug M (2016) Basic well log interpretation. Oilfield Review, Schlumberger

    Google Scholar 

  5. Revil A, Cathles III LM, Losh S, Nunn JA (1998) Electrical conductivity in shaly sands with geophysical applications. J Geophys Res Solid Earth 103:23925–23936. https://doi.org/10.1029/98JB02125

    Article  Google Scholar 

  6. Revil A, Glover PWJ (1998) Nature of surface electrical conductivity in natural sands, sandstones, and clays. Geophys Res Lett 25:691–694. https://doi.org/10.1029/98GL00296

    Article  Google Scholar 

  7. JW EL, Singer K (1975) Thermodynamic properties and self-diffusion of molten sodium chloride. A molecular dynamics study. J Chem Soc, Faraday Trans 2: Mol Chem Phys 71:41–53. https://doi.org/10.1039/F29757100041

    Article  Google Scholar 

  8. Hansen JP, McDonald IR (1975) Statistical mechanics of dense ionized matter. IV. Density and charge fluctuations in a simple molten salt. Phys Rev A 11:2111–2123. https://doi.org/10.1103/PhysRevA.11.2111

    Article  Google Scholar 

  9. Berkowitz M, Wan W (1987) The limiting ionic conductivity of Na+ and Cl ions in aqueous solutions: molecular dynamics simulation. J Chem Phys 86:376–382. https://doi.org/10.1063/1.452574

    Article  CAS  Google Scholar 

  10. Ciccotti G, Jacucci G, McDonald IR (1976) Transport properties of molten alkali halides. Phys Rev A 13:426–436. https://doi.org/10.1103/PhysRevA.13.426

    Article  CAS  Google Scholar 

  11. Guissani Y, Guillot B (1994) Coexisting phases and criticality in NaCl by computer simulation. J Chem Phys 101:490–509. https://doi.org/10.1063/1.468160

    Article  CAS  Google Scholar 

  12. Petravic J, Delhommelle J (2003) Conductivity of molten sodium chloride and its supercritical vapor in strong dc electric fields. J Chem Phys 118:7477–7485. https://doi.org/10.1063/1.1562612

    Article  CAS  Google Scholar 

  13. Delhommelle J, Cummings PT, Petravic J (2005) Conductivity of molten sodium chloride in an arbitrarily weak dc electric field. J Chem Phys 123:114505. https://doi.org/10.1063/1.2035085

    Article  CAS  PubMed  Google Scholar 

  14. Ho M-C, Casciola M, Levine ZA, Vernier PT (2013) Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. J Phys Chem B 117:11633–11640. https://doi.org/10.1021/jp401722g

    Article  CAS  PubMed  Google Scholar 

  15. Klarbring J, Vekilova OY, Nilsson JO et al (2016) Ionic conductivity in Sm-doped ceria from first-principles non-equilibrium molecular dynamics. Solid State Ion 296:47–53. https://doi.org/10.1016/j.ssi.2016.08.011

    Article  CAS  Google Scholar 

  16. De Groot SR, Mazur P (2013) Non-equilibrium thermodynamics. Courier Corporation

    Google Scholar 

  17. Merlet C, Péan C, Rotenberg B et al (2013) Simulating supercapacitors: can we model electrodes as constant charge surfaces? J Phys Chem Lett 4:264–268. https://doi.org/10.1021/jz3019226

    Article  CAS  PubMed  Google Scholar 

  18. Huang DM, Cottin-Bizonne C, Ybert C, Bocquet L (2008) Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip. Langmuir 24:1442–1450. https://doi.org/10.1021/la7021787

    Article  CAS  PubMed  Google Scholar 

  19. Pillai SO (2006) Solid state physics. New Age International

  20. Haynes WM, Lide DR, Bruno TJ (2016) CRC handbook of chemistry and physics. CRC press

    Book  Google Scholar 

  21. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  22. Pawlowicz R (2012) The electrical conductivity of seawater at high temperatures and salinities. Desalination 300:32–39. https://doi.org/10.1016/j.desal.2012.06.001

    Article  CAS  Google Scholar 

  23. Karatrantos AV, Ohba T, Cai Q (2020) Diffusion of ions and solvent in propylene carbonate solutions for lithium-ion battery applications. J Mol Liq 320:114351. https://doi.org/10.1016/j.molliq.2020.114351

    Article  CAS  Google Scholar 

  24. Ding MS, Jow TR (2003) Conductivity and viscosity of PC-DEC and PC-EC Solutions of LiPF6. J Electrochem Soc 150:A620. https://doi.org/10.1149/1.1566019

    Article  CAS  Google Scholar 

  25. Farhat D, Ghamouss F, Maibach J et al (2017) Adiponitrile–lithium bis(trimethylsulfonyl)imide solutions as alkyl carbonate-free electrolytes for Li4Ti5O12 (LTO)/LiNi1/3Co1/3Mn1/3O2 (NMC) Li-Ion Batteries. ChemPhysChem 18:1333–1344. https://doi.org/10.1002/cphc.201700058

    Article  CAS  PubMed  Google Scholar 

  26. Kalogeras IM, Vassilikou-Dova AB (1998) Electrical properties of zeolitic catalysts. Defect Diffus Forum 164:1–36. https://doi.org/10.4028/www.scientific.net/DDF.164.1

    Article  CAS  Google Scholar 

  27. Legras B, Polaert I, Estel L, Thomas M (2011) Mechanisms responsible for dielectric properties of various faujasites and linde type A zeolites in the microwave frequency range. J Phys Chem C 115:3090–3098. https://doi.org/10.1021/jp111423z

    Article  CAS  Google Scholar 

  28. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Elsevier

  29. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford Science Publications, Oxford, UK, p 385

    Google Scholar 

  30. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  31. Thurmond VL, Potter II RW, Clynne MA (1984) The densities of saturated solutions of NaCl and KCL from 10 degrees to 105 degrees C. US Geological Survey

    Book  Google Scholar 

  32. Kraichman MB (1964) The resistivity of aqueous solutions of sodium chloride. Naval Ordnance Lab, White Oak MD

    Book  Google Scholar 

  33. Joung IS, Cheatham TEI (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041. https://doi.org/10.1021/jp8001614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boulougouris GC, Economou IG, Theodorou DN (1998) Engineering a molecular model for water phase equilibrium over a wide temperature range. J Phys Chem B 102:1029–1035. https://doi.org/10.1021/jp972582l

    Article  CAS  Google Scholar 

  35. Christensen M, Eyert V, France-Lanord A et al (2017) Software platforms for electronic/atomistic/mesoscopic modeling: status and perspectives. Integr Mater Manuf Innov 6:92–110. https://doi.org/10.1007/s40192-017-0087-2

    Article  Google Scholar 

  36. Sun H (1998) COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364. https://doi.org/10.1021/jp980939v

    Article  CAS  Google Scholar 

  37. Rigby D, Saxe PW, Freeman CM, Leblanc B (2016) Computational prediction of mechanical properties of glassy polymer blends and thermosets. In: Sano T, Srivatsan TS, Peretti MW (eds) Advanced Composites for Aerospace, Marine, and Land Applications. Springer International Publishing, Cham, pp 157–171

    Google Scholar 

  38. Monteiro MJ, Bazito FFC, Siqueira LJA et al (2008) Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid. J Phys Chem B 112:2102–2109. https://doi.org/10.1021/jp077026y

    Article  CAS  PubMed  Google Scholar 

  39. Duluard S, Grondin J, Bruneel J-L et al (2008) Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. J Raman Spectrosc 39:627–632. https://doi.org/10.1002/jrs.1896

    Article  CAS  Google Scholar 

  40. Takeuchi M, Kameda Y, Umebayashi Y et al (2009) Ion–ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions. J Mol Liq 148:99–108. https://doi.org/10.1016/j.molliq.2009.07.003

    Article  CAS  Google Scholar 

  41. Åvall G, Wallenstein J, Cheng G et al (2021) Highly concentrated electrolytes: electrochemical and physicochemical characteristics of LiPF6 in propylene carbonate solutions. J Electrochem Soc 168:050521. https://doi.org/10.1149/1945-7111/abfdc3

    Article  CAS  Google Scholar 

  42. Seo SM, Kim GH, Lee HS et al (2006) Single-crystal structure of fully dehydrated sodium zeolite Y (FAU), ¦Na71¦[Si121Al71O384]-FAU. Anal Sci: X-ray Struct Analysis Online 22:x209–x210. https://doi.org/10.2116/analscix.22.x209

    Article  CAS  Google Scholar 

  43. Loewenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Mineral 39:92–96

    CAS  Google Scholar 

  44. Cygan RT, Liang J-J, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108:1255–1266. https://doi.org/10.1021/jp0363287

    Article  CAS  Google Scholar 

  45. Pascual P, Ungerer P, Tavitian B et al (2003) Development of a transferable guest–host force field for adsorption of hydrocarbons in zeolites I. Reinvestigation of alkane adsorption in silicalite by grand canonical Monte Carlo simulation. Phys Chem Chem Phys 5:3684–3693. https://doi.org/10.1039/B304209J

    Article  CAS  Google Scholar 

  46. Mackie AD, Tavitian B, Boutin A, Fuchs AH (1997) Vapour-liquid phase equilibria predictions of methane–alkane mixtures by Monte Carlo simulation. Molecular Simulation 19:1–15. https://doi.org/10.1080/08927029708024135

    Article  CAS  Google Scholar 

  47. Ungerer P, Beauvais C, Delhommelle J et al (2000) Optimization of the anisotropic united atoms intermolecular potential for n-alkanes. J Chem Phys 112:5499–5510. https://doi.org/10.1063/1.481116

    Article  CAS  Google Scholar 

  48. Lella AD, Desbiens N, Boutin A et al (2006) Molecular simulation studies of water physisorption in zeolites. Phys Chem Chem Phys 8:5396–5406. https://doi.org/10.1039/B610621H

    Article  PubMed  Google Scholar 

  49. Lee SH, Rasaiah JC (1994) Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25 °C. J Chem Phys 101:6964–6974. https://doi.org/10.1063/1.468323

    Article  Google Scholar 

  50. Lee SH, Rasaiah JC (1996) Molecular dynamics simulation of ion mobility. 2. Alkali Metal and Halide Ions Using the SPC/E Model for Water at 25°C. J Phys Chem 100:1420–1425. https://doi.org/10.1021/jp953050c

    Article  CAS  Google Scholar 

  51. Tesson S, Louisfrema W, Salanne M et al (2018) Classical polarizable force field to study hydrated charged clays and zeolites. J Phys Chem C 122:24690–24704. https://doi.org/10.1021/acs.jpcc.8b06230

    Article  CAS  Google Scholar 

  52. Parks CD (2017) Molecular dynamics investigation of solid state form prediction, selection, and control: towards application to crystallization. Purdue University

    Google Scholar 

  53. Jeffroy M, Nieto-Draghi C, Boutin A (2017) New molecular simulation method to determine both aluminum and cation location in cationic zeolites. Chem Mater 29:513–523. https://doi.org/10.1021/acs.chemmater.6b03011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Stephane Tesson, Marianna Yiannourakou, Xavier Rozanska, and Benoit Leblanc for their help and advice in the implementation of NEMD with the ClayFF forcefield. Fruitful discussions with Erich Wimmer, Alexander Mavromaras, Guillaume Galliero, Arthur France-Lanord, Véronique Lachet, René Windiks, and Shubham Pandey are gratefully acknowledged. The work was realized between January 2018 and January 2023 with the support of Materials Design, Inc.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The method was established, and tests were performed on molten NaCl, NaCl, and LiCl aqueous solutions and NaX zeolites systems by Philippe Ungerer. Tests on ionic liquids + solvents were performed by Benoit Minisini. The first draft of the manuscript was written by Philippe Ungerer, and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Benoit Minisini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 853 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungerer, P., Minisini, B. Prediction of ionic conductivity from adiabatic heating in non-equilibrium molecular dynamics on various test systems. J Mol Model 29, 234 (2023). https://doi.org/10.1007/s00894-023-05640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05640-2

Keywords

Navigation