Log in

A computational and laboratory approach for the investigation of interactions of peptide conjugated natural terpenes with EpHA2 receptor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Ephrin type A receptor 2 (EphA2) is a well-known drug target for cancer treatment due to its overexpression in numerous types of cancers. Thus, it is crucial to determine the binding interactions of this receptor with both the ligand-binding domain (LBD) and the kinase-binding domain (KBD) through a targeted approach in order to modulate its activity. In this work, natural terpenes with inherent anticancer properties were conjugated with short peptides YSAYP and SWLAY that are known to bind to the LBD of EphA2 receptor. We examined the binding interactions of six terpenes (maslinic acid, levopimaric acid, quinopimaric acid, oleanolic, polyalthic, and hydroxybetulinic acid) conjugated to the above peptides with the ligand-binding domain (LBD) of EphA2 receptor computationally. Additionally, following the “target-hop** approach,” we also examined the interactions of the conjugates with the KBD. Our results indicated that most of the conjugates showed higher binding interactions with the EphA2 kinase domain compared to LBD. Furthermore, the binding affinities of the terpenes increased upon conjugating the peptides with the terpenes. In order to further investigate the specificity toward EphA2 kinase domain, we also examined the binding interactions of the terpenes conjugated to VPWXE (x = norleucine), as VPWXE has been shown to bind to other RTKs. Our results indicated that the terpenes conjugated to SWLAY in particular showed high efficacy toward binding to the KBD. We also designed conjugates where in the peptide portion and the terpenes were separated by a butyl (C4) group linker to examine if the binding interactions could be enhanced. Docking studies showed that the conjugates with linkers had enhanced binding with the LBD compared to those without linkers, though binding remained slightly higher without linkers toward the KBD. As a proof of concept, maslinate and oleanolate conjugates of each of the peptides were then tested with F98 tumor cells which are known to overexpress EphA2 receptor. Results indicated that the oleanolate-amido-SWLAY conjugates were efficacious in reducing the cell proliferation of the tumor cells and may be potentially developed and further studied for targeting tumor cells overexpressing the EphA2 receptor. To test if these conjugates could bind to the receptor and potentially function as kinase inhibitors, we conducted SPR analysis and ADP-Glo assay. Our results indicated that OA conjugate with SWLAY showed the highest inhibition.

Methods

Docking studies were carried out using AutoDock Vina, v.1.2.0; Molecular Dynamics and MMGBSA calculations were carried out through Schrodinger Software DESMOND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Additional data available in supporting documents, and manuscript will be available on the faculty website.

References

  1. Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull World Health Org 63:965–981

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yusof Y (2016) Gingerol and Its Role in Chronic Diseases. Adv Exp Med Biol 929:177–207

    Google Scholar 

  3. Kytidou K, Artola M, Overkleeft HS, Aerts JMFG (2020) Plant glycosides and glycosidases: a treasure-trove for therapeutics. Front Plant Sci 11:357

    PubMed  PubMed Central  Google Scholar 

  4. Karim N, Khan H, Khan I, Guo O, Sobarzo-Sanchez E, Rastrelli L, Kamal MA (2020) An increasing role of polyphenols as novel therapeutics for Alzheimer’s: a review. Med Chem 16:1007–1021

    CAS  PubMed  Google Scholar 

  5. Kohli SK, Bhardwaj A, Bhardwaj V, Sharma A, Kalia N, Landi M, Bhardwaj R (2020) Therapeutic potential of brassinosteroids in biomedical and clinical research. Biomolecules 10:572

    CAS  Google Scholar 

  6. Lu J-J, Dang Y-Y, Huang M, Xu W-S, Chen X-P, Wang Y-T (2012) Anti-cancer properties of terpenoids isolated from rhizoma curcumae-A review. J. Ethnopharmacol. 143:406–411

    CAS  PubMed  Google Scholar 

  7. Rarova L, Zahler S, Liebl J, Krystof V, Delka D, Bartunek P, Kohout L, Strnad M (2012) Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells. Steroids 77:1502–1509

    CAS  PubMed  Google Scholar 

  8. Yang SS, Cragg GM, Newman DJ (2001) The Camptothecin experience: from Chinese medicinal plants to potent anti-cancer drugs. Drug Discov Tradition Chin Med 61:74

    Google Scholar 

  9. Khazir J, Mir BA, Pilcher L, Riley DL (2014) Role of plants in anticancer drug discovery. Phytochem Lett 7:173–181

    CAS  Google Scholar 

  10. Zhang QT, Liu ZD, Wang Z, Wang T, Wang N, Zhang B, Zhao Y-F (2015) Recent advances in small peptides of marine origin in cancer therapy. Mar Drugs 19:115

    Google Scholar 

  11. Pachebafi A, Tamanaee F, Ehteram H, Ahmad E, Niksad H, Kashani H (2022) The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb Cell Fact 21:1–18

    Google Scholar 

  12. Kim Y, Lillo AM, Steiniger SC, Liu Y, Ballatore C, Anichini A, Mortarini R, Kaufmann GF, Zhou B, Felding-Habermann B, Janda KD (2006) Targeting heat shock proteins on cancer cells: selection, characterization and cell-penetrating properties of GRP78 ligand. Biochemistry 45:9434–9444

    CAS  PubMed  Google Scholar 

  13. Alves DS, Westerfield JM, Shi X, Nguyen VP, Stefanski KM, Booth KR, Kim S, Morrell-Falvey J, Wang B-C, Abel SM, Smith AW, Barrera FN (2018) A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration. eLife 7:336645

    Google Scholar 

  14. Miao H, Li D-Q, Mukherjee A, Guo H, Petty A, Cutter J, Basilion JP, Sedor J, Wu J, Danielpour D, Sloan AE, Cohen ML, Wang B (2009) EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via reciprocal regulatory loop with Akt. Cancer Cell 16:9–20

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Renee CI, ** C (2005) EphA2 receptor tyrosine kinase as a promising target for cancer therapeutics. Curr Cancer Drug Targets 5:149–157

    Google Scholar 

  16. Brannan JM, Dong W, Prudkin L, Behrens C, Lotan R, Bekele BN, Wistuba I, Johnson FM (2009) Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non-small cell lung cancer. Clin Cancer Res 15:4423–4430

    CAS  PubMed  Google Scholar 

  17. Miao H, Wei BR, Peehl DM, Li Q, Alexandrou T, Schelling JR, Rhim JS, Sedor JR, Burnett E, Wang B (2001) Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 3:527–530

    CAS  PubMed  Google Scholar 

  18. Yang NY, Fernandez C, Richter M, **ao Z, Valencia F, Tice DA, Pasquale EB (2011) Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cell Signal 23:201–212

    CAS  PubMed  Google Scholar 

  19. Taddei ML, Parri M, Angelucci A, Onnis B, Bianchini F, Giannoni E, Raugei G, Calorini L, Rucci N, Teti A, Bologna M, Chiarugi P (2009) Kinase-dependent and independent roles of EphA2 in the regulation of prostate cancer invasion and metastasis. Am J Pathol 174:1492–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pasquale EB (2005) Eph receptor signaling casts a wide net on cell behavior. Nat Rev Mol Cell Biol 6:462–475

    CAS  PubMed  Google Scholar 

  21. Wu B, Wang S, De SK, Barile E, Quinn BA, Zharkikh I, Purves A, Stebbins JL, Oshima RG, Fisher PB, Pellecchia M (2015) Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells. Chem Biol 22:876–887

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Blackburn WH, Dickerson EB, Smith MH, McDonald JF, Lyon LA (2009) Peptide-functionalized nanogels for targeted siRNA delivery. Bioconjug Chem 20:960–968

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dickerson EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF (2010) Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer 10:10

    PubMed  PubMed Central  Google Scholar 

  24. Singh DR, Pasquale EB, Hristova K (2016) A small peptide promotes EphA2 kinase-dependent signaling by stabilizing EphA2 dimers. Biochim Biophys Acta 1860:1922–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lectenberg BC, Gehring MP, Light TP, Horne CR, Matsumoto MW, Hristova K, Pasquale EB (2021) Regulation of EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker. Nature Commun 12:7047

    Google Scholar 

  26. Purba ER, Saita EI, Maruyama IN (2017) Activation of the EGF receptor by ligand binding and oncogenic mutations: The rotation model. Cells 6:13

    PubMed  PubMed Central  Google Scholar 

  27. Mitra S, Duggineni S, Koolpe M, Zhu X, Huang Z, Pasquale EB (2010) Structure-activity relationship analysis of peptides targeting the EphA2 receptor. Biochemistry 49:6687–6695

    CAS  PubMed  Google Scholar 

  28. Tognolini M, Incerti M, Pala D, Russo S, Castelli R, Hassan-Mohamed I, Girogio C, Lodola A (2014) Target hop** as a useful tool for the identification of novel EphA2 protein-protein antagonists. Chem Med Chem Commun 9:67–72

    CAS  Google Scholar 

  29. Giorgio C, Hassan-Mohamed I, Flammini L, Barocelli E, Incerti M, Lodola A, Tognolini M (2011) Lithocholic acid is an Eph-Ephrin ligand interfering with Eph-kinase activation. PLoS ONE 6:e18128

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Seigler DS (1998) Triterpenes and steroids (Chapter 23). In: Plant secondary metabolism. Springer, Boston pp 427–455. https://doi.org/10.1007/978-1-4615-4913-0_23

  31. Incerti M, Tognolini M, Russo S, Pala D, Giorgio C, Hassan-Mohamed I, Noberini R, Pasquale EB, Vicini P, Piersanti S, Rivara S, Barocelli E, Mor M, Lodola A (2013) Amino acid conjugates of lithocholic acid as antagonists of the EphA2 receptor. J Med Chem 56:2936–2947

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang ML, Teck YW, Hsum YW, Hoon LS, Chieng YC (2012) Suppressive effect of MA acid on PMA-induced protein kinase C in human lymphoblastoid cells. Asian Pacific J. Cancer Prevent 13:1513–7368

    Google Scholar 

  33. Murata S, Sasaki T, Yamauchi Y, Shimizu M, Ryuichiro S (2021) MA acid activates mTORC1 and human TGR5 and induces skeletal muscle hypertrophy. Biosci Biotechnol Biochem 85:2311–2321

    PubMed  Google Scholar 

  34. Ganatra SH, Suchak AS (2012) Studies of Naturally Occurring Terpene based Compounds with Cyclin-Dependent Kinase 2 Enzyme. J Comput Sci Syst Biol 5:2

    Google Scholar 

  35. Flekhter OB, Tretyakova EV, Makara NS, Gabdrakhmanova SF, Baschenko BZ, Galin FZ, Zarudii FS, Tolstikov GA (2003) Search for new drugs. Pharm Chem J 37:142–144

    CAS  Google Scholar 

  36. Zhang K, Ding J (2020) In vitro anticancer effects of levopimaric acid in cisplatin-resistant human lung carcinoma are mediated via autophagy, ROS-mediated mitochondrial dysfunction, cell apoptosis and modulation of ERK/MAPK/ JNK signaling pathway. J Buon 25:248–254

    PubMed  Google Scholar 

  37. Yu L, **e X, Cao X, Chen J, Chen G, Chen Y, Li G, Qin J, Peng F, Peng C (2021) The anticancer potential of MA acid and its derivatives: a review. Drug Des Devel Ther 15:3863–3879

    PubMed  PubMed Central  Google Scholar 

  38. Duan L, Yang Z, Jiang X, Zhang J, Guo X (2019) Oleanolic acid inhibits cell proliferation migration and invasion and induces SW579 thyroid cancer cell line apoptosis by targeting forkhead transcription factor A. Anticancer Drugs 8:812–820

    Google Scholar 

  39. Hossein-Nejad-Ariani H, Althagafi E, Kaur K (2019) Small peptide ligands for targeting EGFR in triple negative breast cancer cells. Sci Rep 9:2723

    PubMed  PubMed Central  Google Scholar 

  40. Schrödinger L, DeLano W (2020) PyMOL. Available from: http://www.pymol.org/pymol. Accessed Feb 2023

  41. Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding M, Hattig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Hhah AM, Khani SK, Muller T, Mack F, Nguyen B, Parker SM, Perit E, Rappoport D, Reiter K, Roy S, Rukcert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wullen C, Voora V, Weigend F, Wodynski A, Yu J (2020) Turbomole: modular program suite for ab initio quantum-chemical and condensed matter simulations. J Chem Phys 152:184107

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mullins E, Oldland R, Liu YA, Wang S, Sandler SI, Chen C, Zwolak M, Seavey KC (2006) Sigma-profile database for using COSMO-based thermodynamic methods. Ind Eng Chem Res 45:4389–4415

    CAS  Google Scholar 

  43. Miquel M, Massel M, DeSilva A, Palomar J, Rodriguez F, Brennecke JF (2014) Excess enthalpy of monoethanolamine + ionic liquid mixtures: how good are COSMO-RS predictions? J Phys Chem B 118:11512–11522

    Google Scholar 

  44. Simões T, Lopes D, Dias S, Fernandes F, Pereira J, Jorge J, Bajaj C, Gomes A (2017) Geometric detection algorithms for cavities on protein surfaces in molecular graphics: a survey. Comput Graph Forum 36:643–683

    PubMed  PubMed Central  Google Scholar 

  45. Yu J, Zhou Y, Tanaka I, Yao M (2010) Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 26:46–52

    PubMed  Google Scholar 

  46. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsin K-Y, Ghosh S, Kitano H (2013) Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS ONE 8:e83922

    PubMed  PubMed Central  Google Scholar 

  48. Yan Y, Zhang D, Zhou P, Li B, Huang S-Y (2017) HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45:W365–W373

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang SY (2015) Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking. Drug Discov Today 20:969–977

    CAS  PubMed  Google Scholar 

  50. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt J, Schroeder M (2021) PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res 49:W530–W534

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, 2006, November 11–17

  53. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aid Mol Des 27:221–234

    Google Scholar 

  54. Avbelj F, Moult J, Kitson DH, James MNG, Hagler AT (1990) Molecular dynamics study of the structure and dynamics of a protein molecule in a crystalline ionic environment, Streptomyces griseus protease A. Biochemistry 29:8658–8676

    CAS  PubMed  Google Scholar 

  55. Ibragimova GT, Wade RC (1998) Importance of explicit salt ions for protein stability in molecular dynamics simulation. Biophys J 74:2906–2911

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hub JS, de Groot BL, Grubmüller H, Groenhof G (2014) Quantifying artifacts in Ewald simulations of inhomogeneous systems with a net charge. J Chem Theory Comput 10:381–390

    CAS  PubMed  Google Scholar 

  57. Harder E, Damm W, Maple J, Wu C, Reboul M, **ang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) (2016) OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296

    CAS  PubMed  Google Scholar 

  58. Walesa R, Kupka T, Broda MA (2015) Density functional theory (DFT) prediction of structural and spectroscopic parameters of cytosine using harmonic and anharmonic approximations. Struct Chem 26:1083–1093

    CAS  Google Scholar 

  59. Roos K, Wu C, Damm W, Reboul M, Stevenson JM, Lu C, Dahlgren MK, Mondal S, Chen W, Wang L, Abel R, Friesner RA, Harder ED (2019) J Chem Theory Comput 15:1863–1874

    CAS  PubMed  Google Scholar 

  60. **ong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49:W5–W14

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bergazin TD, Tielker N, Zhang Y, Mao J, Gunner MR, Francisco K, Ballatore C, Kast SM, Mobley DL (2021) Evaluation of log P, pKa and log D predictions from the SAMPL7 blind challenge. J Comput Aided Mol Des 35:771–802

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fischer MJ (2010) Amine coupling through EDC/NHS: a practical approach. Methods Mol Biol 627:55–73

    CAS  PubMed  Google Scholar 

  63. Jackson D, Gooya J, Mao S, Kinneer K, Xu L, Camara M, Fazenbaker C, Fleming R, Swamynathan S, Meyer D, Senter PD, Gao C, Wu H, Kinch M, Coats S, Kiener PA, Tice DA (2008) A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res 68:9367–9374

    CAS  PubMed  Google Scholar 

  64. Asyun A, Yagmur K, Yusuf B (2016) Cell proliferation and toxicity assays. Curr Pharm Biotechnol 17:1213–1221

    Google Scholar 

  65. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J Immunol Methods 184:39–51

    CAS  PubMed  Google Scholar 

  67. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 3:1458–1461

    Google Scholar 

  68. Zegzouti H, Zdanovskaia M, Hsiao K (2009) Goueli SA (2009) ADP-Glo: a Bioluminescent and Homogeneous ADP Monitoring Assay for Kinases. Assay Drug Dev Technol 7(6):560–572

    CAS  PubMed  Google Scholar 

  69. Thormann M, Klamt A, Hornig M, Almstetter M (2006) COSMOsim: Bioisosteric similarity based on COSMO-RS profiles. J Chem Inf Model 46:1040–1053

    CAS  PubMed  Google Scholar 

  70. Atolini O, Olatunji GA (2014) Isolation and evaluation of antiglycation potential of polyalthic acid (furano-terpene) from Daniella Oliveri. J Pharm Anal 5:407–411

    Google Scholar 

  71. Mauriello F, Armandi M, Bonelli B, Onida B, Garrone E (2010) H-bonding of furan and its hydrogenated derivatives with isolated hydroxyl of amorphous silica: an IR spectroscopic and thermodynamic study. J Phys Chem C 114:18233–18239

    CAS  Google Scholar 

  72. Heinzlmeir S, Lohse J, Treiber T, Kudlinzki D, Linhard V, Gande SL, Sreeramulu S, Saxena K, Liu X, Wilhelm M, Schwalbe H, Kuster B, Medard G (2017) Chemoproteomics-Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors. ChemMedChem 12:999–1011

    CAS  PubMed  Google Scholar 

  73. Himanen JP, Yermekbayevaa L, Janes PW, Walker JR, Xu K, Atapattu L, Rajashankar KR, Mensinga A, Lackmann M, Nikolov DB, Dhe-Paganon S (2010) Architecture of Eph receptor clusters. Proc Natl Acad Sci U S A 107:10860–10865

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Heinzlmeir S, Kudlinzki D, Sreeramulu S, Klaeger S, Gande SL, Linharess V, Wilhelm M, Qiao H, Helm D, Ruprecht B, Saxena K, Médard G, Schwabe H, Kuster B (2016) Chemical proteomics and structural biology define EPHA2 inhibition by clinical kinase drugs. ACS Chem Biol 11:3400–3411

    CAS  PubMed  Google Scholar 

  75. Chrencik JE, Brooun A, Kraus ML, Recht MI, Kolatkar AR, Han GW, Seifert JM, Widmer H, Auer M, Kuhn P (2006) Structural and biophysical characterization of the EphB4 EphrinB2 protein-protein interaction and receptor specificity. J Biol Chem 281:28185–28192

    CAS  PubMed  Google Scholar 

  76. Singla N, Goldgur Y, Xu K, Paavilainen S, Nikolov DB, Himanen JP (2010) Crystal structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations. Biochem Biophys Res Commun 399:555–559

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang S-Y, Zou X (2008) An iterative knowledge-based scoring function for protein-protein recognition. Proteins 72:557–579

    CAS  PubMed  Google Scholar 

  78. Huang S-Y, Zou X (2014) A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res 42:e55

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lan PT, Casa DA, Kuntz ID, Rizzo RC (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36:1132–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang S-Y (2018) Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges. Brief Bioinform 19:982–994

    CAS  PubMed  Google Scholar 

  81. Gomez-Soler M, Petersen Gehring M, Lechtenberg BC, Zapata-Mercado E, Hristova K, Pasquale EB (2019) Engineering nanomolar peptide ligands that differentially modulate EphA2 receptor signaling. J Biol Chem 294:8791–8805

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nowakowski J, Cronin CN, McRee DE, Knute MW, Nelson CG, Pavletich NP, Rogers J, Sang B, Scheinberg DN, Swanson RV, Thompson DA (2002) Structures of the cancer-related aurora-A, FAK, and EphA2 protein kinases from nanovolume crystollography. Structure 10:1659–1667

    CAS  PubMed  Google Scholar 

  83. **e N, Du Q, Li J, Huang R (2015) Exploring strong interactions in proteins with quantum chemistry and examples of their applications in drug design. PLoS ONE 10:e0137113

    PubMed  PubMed Central  Google Scholar 

  84. Petty A, Myshkin E, Qin H, Guo H, Miao H, Tochtrop GP, Hsieh J-T, Page P, Liu L, Lindner DJ, Acharya C, Mackerell AD, Ficker E, Song J, Wang B (2012) A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo. PLoS ONE 7:e42120

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Guo** N, Li S, Yunfeng P, Du** W (2004) Oleanolic acid inhibits colorectal cancer angiogenesis by blocking the VEGFR2 signaling pathway. Anticancer Agents Med Chem 18:583–590

    Google Scholar 

  86. Lipophilicity LCW (2014). In: Stolerman I, Price L (eds) Encylcopeida of Psychopharmacol. Springer, Berlin, pp 1–6

    Google Scholar 

  87. Hoa N, Ge L, Kuznetsov Y, McPherson A, Cornforth AN, Pham JTH, Myers M, Ahmed N, Salsman VS, Lamb S, Bowersock JE, Hu Y, Zhou Y, Jadus MR (2010) Glioma cells display complex cell surface topographies that resist the actions of cytolytic effector lymphocytes. J Immunol 185:4793–4803

    CAS  PubMed  Google Scholar 

  88. Ko L, Koestner A, Wechsler W (1980) Morphological characterization of nitroscourea-induced glioma cell lines and clones. Acta Neuropathol 51:23–31

    CAS  PubMed  Google Scholar 

  89. Bryant MJ, Chuah TL, Luff J, Lavin MF, Walker DG (2008) A novel rat model for glioblastoma multiforme using a bioluminescent F98 cell line. J Clin Neurosci 15:545–551

    CAS  PubMed  Google Scholar 

  90. Ahmed S, Mathews AS, Byeon N, Lavasanifar A, Kaur K (2010) Peptide arrays for screening cancer specific peptides. Anal Chem 82:7533–7541

    CAS  PubMed  Google Scholar 

  91. Guo G, Yao W, Zhang Q, Bo Y (2013) Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PLoS ONE 8:e72079

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ng YP, Chen Y, Hu Y, Ip FCF, Ip NY (2013) Olean-12-eno[2,3-c] [1,2,5] oxadiazol-28-oic acid (OEOA) induces G1 cell cycle arrest and differentiation in human leukemia cell lines. PLoS ONE 8:e63580

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wei J, Liu M, Liu H, Wang H, Wang F, Zhang Y, Han L, Lin X (2013) Oleanolic acid arrests cell cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cell. J Appl Toxicol 33:756–765

    CAS  PubMed  Google Scholar 

  94. Machado C, Schenka A, Vassallo J, Tamashiro W, Goncalves EM, Genari S, Verinaud L (2005) Morphological characterization of a human glioma cell line. Cancer Cell Int 5:13

    PubMed  PubMed Central  Google Scholar 

  95. Kumar R, Saneja A, Panda AK (2021) An annexin V-FTIC propidium iodide-based method or detecting apoptosis in a non-small cell lung cancer cell line. Lung Cancer 2279:213–223

    CAS  Google Scholar 

  96. Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Res 45:528–537

    CAS  Google Scholar 

  97. Engeland M, Nieland LJW, Ramaekers FCS, Schutte B, Reutelingsperger CPM (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    PubMed  Google Scholar 

  98. Reyes-Zurita F, Pachon-Pena G, Lizarraga D, Rufino-Palomares EE, Cascante M, Lupianez JA (2011) The natural triterpene Maslinic acid induces apoptosis in HT29 colon cancer cells by JNK-p53 dependent mechanism. BMC Cancer 11:154

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lucio KA, Rocha G, Moncao-Ribeiro LC, Ferandes J, Takiya CM, Gatass CR (2011) Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of B16F10 melanoma model in vivo. PLoS ONE 6:e28596

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Singh N, Tiwari S, Srivastava KK, Siddiqi MI (2015) Identification of novel inhibitors of mycobacterium tuberculosis PknG using pharmacophore based virtual screening, docking, molecular dynamics simulation and their biological evaluation. J Chem Inf Model 55:1120–1129

    CAS  PubMed  Google Scholar 

  101. Wang Q, Zorn JA, Kuriyan J (2014) Chapter Two. A structural atlas of kinases inhibited by clinically approved drugs. Methods Enzymol 548:23–67

    CAS  PubMed  Google Scholar 

  102. Kitagawa D, Gouda M, Kirii Y (2014) Quick Evaluation of kinase inhibitors by surface plasmon resonance using single-site specifically biotinylated kinases. J Biomol Screen 19:453–461

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

BG thanks the Clare Boothe Luce Foundation and Fordham University Research Grant for financial support of this work. BG also would like to thank Ms. Lucy Hart for her assistance with cell studies. IB thanks Fordham University research grants for financial support of this work.

Funding

Fordham University Research Grants.

Author information

Authors and Affiliations

Authors

Contributions

Ipsita Banerjee was responsible for conception and design. Material preparation and data collection was performed by Beatriz Goncalves. The first draft of the manuscript was written by Beatriz Goncalves and both authors commented on previous versions of the manuscript. Beatriz Goncalves and Ipsita Banerjee were responsible for data analysis. Final manuscript was written and edited by Ipsita Banerjee.

Corresponding author

Correspondence to Ipsita A. Banerjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4280 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncalves, B.G., Banerjee, I.A. A computational and laboratory approach for the investigation of interactions of peptide conjugated natural terpenes with EpHA2 receptor. J Mol Model 29, 204 (2023). https://doi.org/10.1007/s00894-023-05596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05596-3

Keywords

Navigation