Log in

Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract   

Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many applications. By using a chemical do** method, armchair graphene nanoribbons (AGNRs) can have thermoelectric properties that are tunable. We predicted that changing the number and geometrical pattern of zinc oxide (ZnO) dimers in an AGNR can engineer thermoelectric properties, so we used density functional-based tight binding (DFTB) combined with the non-equilibrium Green’s function (NEGF) to investigate the geometric, electronic, and thermoelectric properties of the AGNR with and without various dopants of ZnO dimers. With three forms of ZnO dimers, ortho, meta, and para dimers, different concentration ratios of Zn and O atoms are used. Our results indicate that the electronic features of AGNR are influenced not only by the concentrations of ZnO dimers but also by the geometrical pattern of ZnO dimers in the AGNR. These results are helpful in better understanding the effect of chemical do** on the transport properties of AGNRs and in motivating nanodevices to improve their thermoelectric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing is not relevant to this article since no new data were produced or analyzed in this investigation.

References 

  1. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461

    Article  CAS  PubMed  Google Scholar 

  2. DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285(5428):703–706

    Article  CAS  PubMed  Google Scholar 

  3. Mazzamuto F et al (2011) Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys Rev B 83(23):235426

    Article  Google Scholar 

  4. RamezaniAkbarabadi S, RahimpourSoleimani H, Golsanamlou Z, BagheriTagani M (2020) Enhanced thermoelectric properties in anthracene molecular device with graphene electrodes: the role of phononic thermal conductance. Sci Rep 10(1):1–13

    Google Scholar 

  5. Markov M, Rezaei SE, Sadeghi SN, Esfarjani K, Zebarjadi M (2019) Thermoelectric properties of semimetals. Phys Rev Mater 3(9):095401

    Article  CAS  Google Scholar 

  6. Adhidewata JM, Nugraha AR, Hasdeo EH, Estellé P, Gunara BE (2022) Thermoelectric properties of semiconducting materials with parabolic and pudding-mold band structures. Mater Today Commun 31:103737

    Article  CAS  Google Scholar 

  7. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114

    Article  CAS  PubMed  Google Scholar 

  8. Kim TY, Park C-H, Marzari N (2016) The electronic thermal conductivity of graphene. Nano Lett 16(4):2439–2443

    Article  CAS  PubMed  Google Scholar 

  9. Geim AK, Novoselov KS (2010) The rise of graphene.  Na Mater 6(3):83–191. https://doi.org/10.1038/nmat1849

  10. Wakabayashi K, Fujita M, Ajiki H, Sigrist M (1999) Electronic and magnetic properties of nanographite ribbons. Phys Rev B 59(12):8271

    Article  CAS  Google Scholar 

  11. Ramezani Akbarabadi S, Madadi Asl M (2021) Impurity substitution enhances thermoelectric figure of merit in zigzag graphene nanoribbons. Advances in Condensed Matter Physics. https://doi.org/10.1155/2021/8110754

    Article  Google Scholar 

  12. Suman H, Srivastava R, Shrivastava S, Srivastava A, Jacob A, Malvi C (2020) DFT analysis of H2S adsorbed zigzag and armchair graphene nanoribbons. Chemical Physics Letters 745:137280

    Article  Google Scholar 

  13. Anno Y, Imakita Y, Takei K, Akita S, Arie T (2017) Enhancement of graphene thermoelectric performance through defect engineering. 2D Materials 4(2):025019

    Article  Google Scholar 

  14. Zheng H et al (2012) Enhanced thermoelectric performance of graphene nanoribbons. Appl Phys Lett 100(9):093104

    Article  Google Scholar 

  15. Akbarabadi SR, Soleimani HR, Tagani MB, Golsanamlou Z (2017) Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor. Chin Phys B 26(2):027303

    Article  Google Scholar 

  16. Xu X, Gabor NM, Alden JS, Van Der Zande AM, McEuen PL (2010) Photo-thermoelectric effect at a graphene interface junction. Nano Lett 10(2):562–566

    Article  CAS  PubMed  Google Scholar 

  17. Abdullah NR, Abdalla DA, Ahmed TY, Abdulqadr SW, Rashid HO (2020) Effect of bn dimers on the stability, electronic, and thermal properties of monolayer graphene. Results Physics 18:103282

    Article  Google Scholar 

  18. Deb J, Mondal R, Sarkar U, Sadeghi H (2021) Thermoelectric properties of pristine graphyne and the BN-doped graphyne family. ACS Omega 6(31):20149–20157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. MadadiAsl M, RamezaniAkbarabadi S (2021) Voltage-dependent plasticity of spin-polarized conductance in phenyl-based single-molecule magnetic tunnel junctions,". Plos one 16(9):e0257228

    Article  CAS  Google Scholar 

  20. Dutta S, Manna AK, Pati SK (2009) Intrinsic half-metallicity in modified graphene nanoribbons. Phys Rev Lett 102(9):096601

    Article  PubMed  Google Scholar 

  21. Biel B, Blase X, Triozon F, Roche S (2009) Anomalous do** effects on charge transport in graphene nanoribbons. Phys Rev Lett 102(9):096803

    Article  PubMed  Google Scholar 

  22. Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Physical Review B 65(16):165401

    Article  Google Scholar 

  23. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

  24. Cakır D, Peeters F (2014) Dependence of the electronic and transport properties of metal-MoSe 2 interfaces on contact structures. Phys Rev B 89(24):245403

    Article  Google Scholar 

  25. Arab A, Davydov A, Papaconstantopoulos D, Li Q (2016) Monolayer MoS2 nanoribbons as a promising material for both n-type and p-type legs in thermoelectric generators. J Electron Mater 45(10):5253–5263

    Article  CAS  Google Scholar 

  26. Arab A, Li Q (2015) Anisotropic thermoelectric behavior in armchair and zigzag mono-and fewlayer MoS2 in thermoelectric generator applications. Sci Rep 5(1):1–12

    Article  Google Scholar 

  27. Peng Y-N et al (2020) "An efficient mechanism for enhancing the thermoelectricity of twin graphene nanoribbons by introducing defects. Physica E: Low-dimensional Syst Nanostructures 122:114160

    Article  CAS  Google Scholar 

  28. Nika DL, Balandin AA (2012) Two-dimensional phonon transport in graphene. J Phys: Condens Matter 24(23):233203

    PubMed  Google Scholar 

  29. Balandin AA, Nika DL (2012) Phononics in low-dimensional materials. Mater Today 15(6):266–275

    Article  CAS  Google Scholar 

  30. Sadeghi H, Sangtarash S, Lambert CJ (2015) Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons. Beilstein J Nanotechnol 6(1):1176–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Evans WJ, Hu L, Keblinski P (2010) Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl Phys Lett 96(20):203112

    Article  Google Scholar 

  32. Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Çağın T (2011) Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 5(5):3779–3787. https://doi.org/10.1021/nn200114p

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y, Liu Y, Li R, Li Y, Bai S (2022) Strategies to improve the thermoelectric figure of merit in thermoelectric functional materials. Front Chem 10:865281. https://doi.org/10.3389/fchem.2022.865281

  34. Kharwar S, Singh S, Jaiswal NK (2021) First-principles investigation of Pd-doped armchair graphene nanoribbons as a potential rectifier. J Electron Mater 50(3):1196–1206

    Article  CAS  Google Scholar 

  35. Salih E, Ayesh AI (2021) Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study. Physica E: Low-dimensional Syst Nanostruct 125:114418

    Article  CAS  Google Scholar 

  36. Tornqvist L, Vartia P, Vartia YO (1985) How should relative changes be measured. Am Stat 39(1):43–46. https://doi.org/10.2307/2683905

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, computations, data collection, and analysis were performed by Fouad N. Ajeel. Ali ben Ahmed verified the analytical methods and supervised the findings of this work. The first draft of the manuscript was written by Fouad N. Ajeel. All authors discussed the results and contributed to reading and approving the final manuscript.

Corresponding author

Correspondence to Fouad N. Ajeel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajeel, F.N., Ahmed, A.b. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons. J Mol Model 29, 145 (2023). https://doi.org/10.1007/s00894-023-05545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05545-0

Keywords

Navigation