Log in

Molecular dynamics simulation of mechanical properties of carbon nanotube reinforced cellulose

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cellulose, hemicellulose, and lignin are the major chemical components in wood paper. Various types of wet and dry strength additives are used to enhance the optical and mechanical properties of recycled paper. One of the possible materials is the carbon nanotube. In order to explore the probability of the use of carbon nanotubes as reinforcing materials and to understand how carbon nanotubes affect the mechanical properties of paper, a single-walled carbon nanotube is inserted into a \({I}_{\beta }\) cellulose nanocrystal, and its mechanical properties are studied by using energy minimization and molecular dynamics (MD) simulations. During simulations, the crystals are stretched in the axial direction at a constant speed, and stress and strain are computed and recorded at the atomic level. Our results indicate that carbon nanotube can significantly enhance the mechanical properties of paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All authors declare the availability of data and materials. All data is created from our research course and available from the corresponding author upon reasonable request.

References

  1. Liu X, Jiang Y, Sing X, Qin C, Wang S, Li K (2019) A bio-mechanical process for cellulose nanofiber production-Towards a greener and energy conservation solution. Carbohyd Polym 208:191–199. https://doi.org/10.1016/j.carbpol.2018.12.071

    Article  CAS  Google Scholar 

  2. Overney G, Zhong W, Tomanek D (1993) Structural rigidity and low-frequency vibrational-modes of long carbon tubules. Z Phys D: At Mol Clusters 27(1):93–96. https://doi.org/10.1007/BF01436769

    Article  CAS  Google Scholar 

  3. Čanađija M (2021) Deep learning framework for carbon nanotubes: mechanical properties and modeling strategies. Carbon 30(184):891–901

    Article  Google Scholar 

  4. Meyyappan M (2004) Carbon Nanotubes. CRC Press Boca Raton. https://doi.org/10.1201/9780203494936

    Article  Google Scholar 

  5. Eghbalian M, Ansari R, Haghighi S (2022) Molecular dynamics study of mechanical properties and fracture behavior of carbon and silicon carbide nanotubes under chemical adsorption of atoms. Diam Relat Mater 121:108764

    Article  CAS  Google Scholar 

  6. Eghbalian M, Ansari R, Rouhi S (2021) Mechanical properties of oxygen-functionalized silicon carbide nanotubes: a molecular dynamics study. Physica B 610:412939

    Article  CAS  Google Scholar 

  7. Park C, Ounaies Z, Watson KA, Pawlowski K, Lowther SE, Connell JW, Siochi EJ, Harrison JS, St Clair TL (2001) Polymer-single wall carbon nanotube composites for potential spacecraft applications. MRS Online Proceedings Library (OPL) 706:3301https://doi.org/10.1557/PROC-706-Z3.30.1

  8. Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS (2003) The stress–strain behavior of polymer-nanotube composites from molecular dynamics simulation. Compos Sci Technol 63:1655–1661. https://doi.org/10.1016/S0266-3538(03)00059-9

    Article  CAS  Google Scholar 

  9. Qi D, Hinkley J, He G (2005) Molecular dynamics simulation of thermal and mechanical properties of polyimide–carbon-nanotube composites. Modelling Simul Mater Sci Eng 13:493–507. https://doi.org/10.1088/0965-0393/13/4/002

    Article  CAS  Google Scholar 

  10. Uto T, Miyata T, Yui T (2014) Prediction of cellulose nanotube models through density functional theory calculations. Cellulose 21:87–95. https://doi.org/10.1007/s10570-013-0125-y(2014)

    Article  CAS  Google Scholar 

  11. Uto T, Kodama Y, Miyata T, Yui T (2018) Molecular dynamics simulations of theoretical cellulose nanotube models. Carbohydr Polym 190:331–338. https://doi.org/10.1016/j.carbpol.2018.03.004(2018)

    Article  CAS  PubMed  Google Scholar 

  12. Alqus R, Eichhorn SJ, Bryce RA (2015) Molecular dynamics of cellulose amphiphilicity at the graphene-water interface. Biomacromol 16:1771–1783. https://doi.org/10.1021/acs.biomac.5b00307(2015)

    Article  CAS  Google Scholar 

  13. Bu L, Himmel ME, Crowley MF (2015) The molecular origins of twist in cellulose Ib. Carbohydr Polym 125:146–152. https://doi.org/10.1016/j.carbpol.2015.02.023(2015)

    Article  CAS  PubMed  Google Scholar 

  14. Chen P, Ogawa Y, Nishiyama Y, Bergenstråhle-Wohlert M, Mazeau K (2015) Alternative hydrogen bond models of cellulose II and IIII based on molecular force-fields and density functional theory. Cellulose 22:1485–1493. https://doi.org/10.1007/s10570-015-0589-z

    Article  CAS  Google Scholar 

  15. Matthews JF, Beckham GT, Bergenstrahle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748. https://doi.org/10.1021/ct2007692(2012)

    Article  CAS  PubMed  Google Scholar 

  16. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152. https://doi.org/10.1016/j.carres.2005.09.028(2006)

    Article  CAS  PubMed  Google Scholar 

  17. Paavilainen S, Rog T, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115:3747–3755. https://doi.org/10.1021/jp111459b(2011)

    Article  CAS  PubMed  Google Scholar 

  18. Qin X, **a W, Sinko R, Keten S (2015) Tuning glass transition in polymer nanocomposites with functionalized cellulose nanocrystals through nanoconfinement. Nano Lett 15:6738–6744. https://doi.org/10.1021/acs.nanolett.5b02588(2015)

    Article  CAS  PubMed  Google Scholar 

  19. Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530. https://doi.org/10.1016/j.carres.2006.04.051(2006)

    Article  CAS  PubMed  Google Scholar 

  20. Uto T, Mawatari S, Yui T (2014) Theoretical study of the structural stability of molecular chain sheet models of cellulose crystal allomorphs. J Phys Chem B 118:9313–9321. https://doi.org/10.1021/jp503535d(2014)

    Article  CAS  PubMed  Google Scholar 

  21. Shishehbor M, Pouranian MR (2020) Tuning the mechanical and adhesion properties of carbon nanotubes using aligned cellulose wrap (cellulose nanotube): a molecular dynamics study. Nanomaterials 10:154. https://doi.org/10.3390/nano10010154

  22. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. https://doi.org/10.1021/ja0257319

    Article  CAS  PubMed  Google Scholar 

  23. Thiago CFG, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33(14):1338–1346. https://doi.org/10.1002/jcc.22959

    Article  CAS  Google Scholar 

  24. French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609. https://doi.org/10.1007/s10570-017-1450-3

    Article  CAS  Google Scholar 

  25. White CT, Robertson DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphitic tubules. Phys Rev B 47:5485. https://doi.org/10.1103/PhysRevB.47.5485

    Article  CAS  Google Scholar 

  26. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19. https://www.lammps.org

  27. Hatcher ER, Guvench O, MacKerell AD Jr (2009) CHARMM additive all-atom force field for acyclic. polyalcohols acyclic carbohydrates, and inositol. J Chem Theo Comput 5(5):1315–1327

    Article  CAS  Google Scholar 

  28. Karplus M, Levitt M, Warshel A (2013) PNAS 110(49):19656–19657. https://doi.org/10.1073/pnas.1320569110

    Article  CAS  Google Scholar 

  29. Liu Y, Bryantsev VS, Diallo MS (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131(8):2798. https://doi.org/10.1021/ja8100227

    Article  CAS  PubMed  Google Scholar 

  30. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909. https://doi.org/10.1021/j100389a010

    Article  CAS  Google Scholar 

  31. Hoover WG (1985) Canonical dynamics: equilibrium phase space/distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  32. Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511. https://doi.org/10.1063/1.447334

    Article  CAS  Google Scholar 

  33. Krassig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach Science Publishers, Yverdon, vol 11

  34. Dri FL, Shang S, Hector LGJ, Saxe P, Liu ZK, Moon RJ, Zavattieri PD (2014) Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation. Modelling Simul Mater Sci Eng 22:085012. https://doi.org/10.1088/0965-0393/22/8/085012

    Article  CAS  Google Scholar 

  35. Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468. https://doi.org/10.1016/S0032-3861(96)00516-2

    Article  CAS  Google Scholar 

  36. Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by x-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23:3266–3275

    Article  CAS  Google Scholar 

  37. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci B 33:1647–1655. https://doi.org/10.1002/polb.1995.090331110

    Article  CAS  Google Scholar 

  38. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660. https://doi.org/10.1002/pol.1962.1205716551

    Article  CAS  Google Scholar 

  39. Sakurada I, Ito T, Nakamae K (1964) Elastic moduli of polymer crystals for the chain axial direction. Die Makromol Chem 75:1–10. https://doi.org/10.1002/macp.1964.020750101

    Article  CAS  Google Scholar 

  40. Tashiro K, Kobayashi M (1985) Calculation of crystallite modulus of native cellulose. Polym Bull 14:213–218. https://doi.org/10.1007/BF00254940

    Article  CAS  Google Scholar 

  41. Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307. https://doi.org/10.1007/s10570-006-9046-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from US DOE (Project Award No. DE-EE0007897). A computational allocation in Argonne National Laboratory is appreciated.

Funding

Funding for this research comes from the Department of Energy, USA (Project Award No. DE-EE0007897).

Author information

Authors and Affiliations

Authors

Contributions

All Authors have made an equal contribution to all parts of this manuscript.

Corresponding author

Correspondence to Dewei Qi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This research does not involve the use of any animal or human data or tissue, so ethics approval and consent to participate are not applicable.

Consent for publication

This manuscript does not contain data from any individual person; therefore, consent for publication is not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Qi, D. Molecular dynamics simulation of mechanical properties of carbon nanotube reinforced cellulose. J Mol Model 29, 127 (2023). https://doi.org/10.1007/s00894-023-05542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05542-3

Keywords

Navigation