Log in

Shedding light on static and dynamic hyperpolarizabilities of thia[7&8]circulenes, toward their NLO applications

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Herein, we examined the nonlinear optical properties of thia[7&8]circulenes (118). Circulenes are the building blocks of various nanomaterials such as graphene, nanotubes, and fullerenes. Many studies on circulenes have focused on the aromaticity of circulenes, but less attention has been paid on optoelectronics properties. Carbon atoms of the [7&8]circulenes are replaced with multiple sulfur atoms to designed thia[7&8]circulenes (118). These circulenes (1–18) are thermodynamically, kinetically, and chemically stable. Nonlinear optical (NLO) response is evaluated through static and frequency-dependent first and second hyperpolarizability values. The static first hyperpolarizability (βo) of these compounds ranges between 0.00 and 496 au. The frequency-dependent coefficients for all thia[7&8]circulenes show remarkable enhancement at 532 and 1064 nm, respectively. The nonlinear refractive index is increased up to 1.13 × 10−14 au for circulene 9 at 532 nm. These findings successfully demonstrated that nonlinear optical response of thia[7&8]circulenes can be increased by decorating multiple sulfur atoms. The unsymmetrical distribution of sulfur atoms is more effective in enhancing nonlinear optical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

The software used is commercially available.

References

  1. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195–242. https://doi.org/10.1021/cr00025a007

    Article  CAS  Google Scholar 

  2. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668. https://doi.org/10.1063/1.434213

    Article  CAS  Google Scholar 

  3. Coe BJ (2006) Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. Acc Chem Res 39:383–393. https://doi.org/10.1021/ar050225k

    Article  CAS  Google Scholar 

  4. Muhammad S, Xu H-L, Zhong R-L, Su Z-M, Al-Sehemi AG, Irfan A (2013) Quantum chemical design of nonlinear optical materials by sp2-hybridized carbon nanomaterials: issues and opportunities. J Mater Chem C 1:5439. https://doi.org/10.1039/c3tc31183j

    Article  CAS  Google Scholar 

  5. Blanchard-Desce M, Alain V, Bedworth PV, Marder SR, Fort A, Runser C, Barzoukas M, Lebus S, Wortmann R (1997) Large quadratic hyperpolarizabilities with donor–acceptor polyenes exhibiting optimum bond length alternation: correlation between structure and hyperpolarizability. Chem - A Eur J 3:1091–1104. https://doi.org/10.1002/chem.19970030717

    Article  CAS  Google Scholar 

  6. Zhang C, Song Y, Wang X (2007) Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: a comparative study. Coord Chem Rev 251:111–141. https://doi.org/10.1016/j.ccr.2006.06.007

    Article  CAS  Google Scholar 

  7. Sang HL, Jo RP, Jeong MY, Hwan MK, Li S, Song J, Ham S, Jeon SJ, Bong RC (2006) First hyperpolarizabilities of 1,3,5-tricyanobenzene derivatives: origin of larger β values for the octupoles than for the dipoles. ChemPhysChem 7:206–212. https://doi.org/10.1002/cphc.200500274

    Article  CAS  Google Scholar 

  8. Liu CG, Guan W, Song P, Yan LK, Su ZM (2009) Redox-switchable second-order nonlinear optical responses of push-pull monotetrathiafulvalene-metalloporphyrins. Inorg Chem 48:6548–6554. https://doi.org/10.1021/ic9004906

    Article  CAS  Google Scholar 

  9. Wu C-L, Lin Y-H, Su S-P, Huang B-J, Tsai C-T, Wang H-Y, Chi Y-C, Wu C-I, Lin G-R (2015) Enhancing optical nonlinearity in a nonstoichiometric SiN waveguide for cross-wavelength all-optical data processing. ACS Photonics 2:1141–1154. https://doi.org/10.1021/acsphotonics.5b00192

    Article  CAS  Google Scholar 

  10. Hsieh C-H, Chou L-J, Lin G-R, Bando Y, Golberg D (2008) Nanophotonic switch: gold-in-Ga 2 O 3 peapod nanowires. Nano Lett 8:3081–3085. https://doi.org/10.1021/nl0731567

    Article  CAS  Google Scholar 

  11. Marder SR, Perry JW (1993) Molecular materials for second-order nonlinear optical applications. Adv Mater 5:804–815. https://doi.org/10.1002/adma.19930051104

    Article  CAS  Google Scholar 

  12. Cagardová D, Matúška J, Poliak P, Lukeš V (2019) Design of novel generations of planar sunflower molecules: theoretical comparative study of electronic structure and charge transport characteristics. J Phys Chem C 123:22752–22766. https://doi.org/10.1021/acs.jpcc.9b05598

    Article  CAS  Google Scholar 

  13. Dopper JH, Wynberg H (1972) Heterocirculenes a new class of polycyclic aromatic hydrocarbons. Tetrahedron Lett 13:763–766. https://doi.org/10.1016/S0040-4039(01)84432-4

    Article  Google Scholar 

  14. Fujimoto T, Matsushita MM, Awaga K (2010) Dual-gate field-effect transistors of octathio[8]circulene thin-films with ionic liquid and SiO2 gate dielectrics. Appl Phys Lett 97:123303. https://doi.org/10.1063/1.3491807

    Article  CAS  Google Scholar 

  15. Baryshnikov GV, Minaev BF, Minaeva VA (2015) Electronic structure, aromaticity and spectra of hetero[8]circulenes. Russ Chem Rev 84:455–484. https://doi.org/10.1070/RCR4445

    Article  CAS  Google Scholar 

  16. Nielsen CB, Brock-Nannestad T, Reenberg TK, Hammershøj P, Christensen JB, Stouwdam JW, Pittelkow M (2010) Organic light-emitting diodes from symmetrical and unsymmetrical π-extended tetraoxa[8]circulenes. Chem - A Eur J 16:13030–13034. https://doi.org/10.1002/chem.201002261

    Article  CAS  Google Scholar 

  17. Burn PL, Lo S-C, Samuel IDW (2007) The development of light-emitting dendrimers for displays. Adv Mater 19:1675–1688. https://doi.org/10.1002/adma.200601592

    Article  CAS  Google Scholar 

  18. Fujimoto T, Matsushita MM, Awaga K (2012) Ionic-liquid component dependence of carrier injection and mobility for electric-double-layer organic thin-film transistors. J Phys Chem C 116:5240–5245. https://doi.org/10.1021/jp2122642

    Article  CAS  Google Scholar 

  19. Minaev BF, Baryshnikov GV, Minaeva VA (2011) Density functional theory study of electronic structure and spectra of tetraoxa[8]circulenes, Comput. Theor Chem 972:68–74. https://doi.org/10.1016/j.comptc.2011.06.020

    Article  CAS  Google Scholar 

  20. Yu J, Sun Q, Kawazoe Y, Jena P (2014) Stability and properties of 2D porous nanosheets based on tetraoxa[8]circulene analogues. Nanoscale 6:14962–14970. https://doi.org/10.1039/C4NR05037A

    Article  CAS  Google Scholar 

  21. Kuklin AV, Baryshnikov GV, Minaev BF, Ignatova N, Ågren H (2018) Strong topological states and high charge carrier mobility in tetraoxa[8]circulene nanosheets. J Phys Chem C 122:22216–22222. https://doi.org/10.1021/acs.jpcc.8b08596

    Article  CAS  Google Scholar 

  22. Chen F, Tanaka T, Mori T, Osuka A (2018) Synthesis, structures, and optical properties of azahelicene derivatives and unexpected formation of azahepta[8]circulenes. Chem A Eur J 24:7489–7497

    Article  CAS  Google Scholar 

  23. Baryshnikov GV, Valiev RR, Karaush NN, Minaeva VA, Sinelnikov AN, Pedersen SK, Pittelkow M, Minaev BF, Ågren H (2016) Benzoannelated aza-, oxa- and azaoxa[8]circulenes as promising blue organic emitters. Phys Chem Chem Phys 18:28040–28051. https://doi.org/10.1039/C6CP03060B

    Article  CAS  Google Scholar 

  24. Kato S, Akahori S, Serizawa Y, Lin X, Yamauchi M, Yagai S, Sakurai T, Matsuda W, Seki S, Shinokubo H, Miyake Y (2020) Systematic synthesis of tetrathia[8]circulenes: the influence of peripheral substituents on the structures and properties in solution and solid states. J Org Chem 85:62–69. https://doi.org/10.1021/acs.joc.9b01655

    Article  CAS  Google Scholar 

  25. Mousavi M, Fini EH (2021) Phenolic compounds to amplify the effect of sulfur on Bitumen’s thermomechanical properties. Fuel 287:119532. https://doi.org/10.1016/j.fuel.2020.119532

    Article  CAS  Google Scholar 

  26. Oftadeh M, Naseh S, Hamadanian M (2011) Electronic properties and dipole polarizability of thiophene and thiophenol derivatives via density functional theory, Comput. Theor Chem 966:20–25. https://doi.org/10.1016/j.comptc.2011.02.003

    Article  CAS  Google Scholar 

  27. Al‐Janabi ASM, Al‐Samra UAY, Othman EA, Yousef TA (2020) Optical properties, structural, and DFT studies of Pd(II) complexes with 1‐phenyl‐1 H‐tetrazol‐5‐thiol, X‐ray crystal structure of [Pd(κ1‐S‐ptt) 2 (κ2‐dppe)] complex. Appl Organomet Chem 34:e5996. https://doi.org/10.1002/aoc.5996

  28. Narita A, Wang X-Y, Feng X, Müllen K (2015) New advances in nanographene chemistry. Chem Soc Rev 44:6616–6643. https://doi.org/10.1039/C5CS00183H

    Article  CAS  Google Scholar 

  29. Stępień M, Gońka E, Żyła M, Sprutta N (2017) Heterocyclic nanographenes and other polycyclic heteroaromatic compounds: synthetic routes, properties, and applications. Chem Rev 117:3479–3716. https://doi.org/10.1021/acs.chemrev.6b00076

    Article  CAS  Google Scholar 

  30. Yoshida K, Osuka A (2015) Peripherally hexasulfanylated subporphyrins. Chem - An Asian J 10:1526–1534. https://doi.org/10.1002/asia.201500225

    Article  CAS  Google Scholar 

  31. Chernichenko KY, Balenkova ES, Nenajdenko VG (2008) From thiophene to sulflower. Mendeleev Commun 18:171–179. https://doi.org/10.1016/j.mencom.2008.07.001

    Article  CAS  Google Scholar 

  32. Gingras M, Pinchart A, Dallaire C, Mallah T, Levillain E (2004) Star-shaped nanomolecules based onp-Phenylene Sulfide Asterisks with a persulfurated coronene Core. Chem - A Eur J 10:2895–2904. https://doi.org/10.1002/chem.200305605

    Article  CAS  Google Scholar 

  33. Chernichenko KY, Sumerin VV, Shpanchenko RV, Balenkova ES, Nenajdenko VG (2006) “Sulflower”: a new form of carbon sulfide, Angew. Chemie 118:7527–7530. https://doi.org/10.1002/ange.200602190

    Article  Google Scholar 

  34. Datta A, Pati SK (2007) Computational design of high hydrogen adsorption efficiency in molecular “sulflower.” J Phys Chem C 111:4487–4490. https://doi.org/10.1021/jp070609n

    Article  CAS  Google Scholar 

  35. Dong R, Pfeffermann M, Skidin D, Wang F, Fu Y, Narita A, Tommasini M, Moresco F, Cuniberti G, Berger R, Müllen K, Feng X (2017) Persulfurated coronene: a new generation of “sulflower.” J Am Chem Soc 139:2168–2171. https://doi.org/10.1021/jacs.6b12630

    Article  CAS  Google Scholar 

  36. Mahmood T, Kosar N, Ayub K (2017) DFT study of acceleration of electrocyclization in photochromes under radical cationic conditions: comparison with recent experimental data. Tetrahedron 73:3521–3528. https://doi.org/10.1016/j.tet.2017.05.031

    Article  CAS  Google Scholar 

  37. Ullah F, Kosar N, Ayub K, Mahmood T (2019) Superalkalis as a source of diffuse excess electrons in newly designed inorganic electrides with remarkable nonlinear response and deep ultraviolet transparency: a DFT study. Appl Surf Sci 483:1118–1128. https://doi.org/10.1016/j.apsusc.2019.04.042

    Article  CAS  Google Scholar 

  38. Kosar N, Mahmood T, Ayub K, Tabassum S, Arshad M, Gilani MA (2019) Do** superalkali on Zn12O12 nanocage constitutes a superior approach to fabricate stable and high-performance nonlinear optical materials. Opt Laser Technol 120:105753. https://doi.org/10.1016/j.optlastec.2019.105753

    Article  CAS  Google Scholar 

  39. Kosar N, Tahir H, Ayub K, Gilani MA, Arshad M, Mahmood T (2021) Impact of even number of alkaline earth metal do** on the NLO response of C20 nanocluster; a DFT outcome. Comput Theor Chem 1204:113386. https://doi.org/10.1016/j.comptc.2021.113386

    Article  CAS  Google Scholar 

  40. Kosar N, Ayub K, Gilani MA, Shah F, Mahmood T (2020) Benchmark approach to search of cost‐effective and accurate density functional for homolytic cleavage of C─Mg bond of Grignard reagent. Int J Quantum Chem 120:e2606. https://doi.org/10.1002/qua.26106

  41. Rudnitskaya A, Török B, Dransfield T (2011) A B3LYP/6-31+G(d) study of the reaction pathways and conformational preference in a model Chichibabin reaction, Comput. Theor Chem 963:191–199. https://doi.org/10.1016/j.comptc.2010.10.023

    Article  CAS  Google Scholar 

  42. Muzomwe M, Maes G, Kasende OE (2012) Theoretical DFT(B3LYP)/6-31+G(d) study on the prediction of the preferred interaction site of 3-methyl-4-pyrimidone with different proton donors. Nat Sci 04:286–297. https://doi.org/10.4236/ns.2012.45041

    Article  CAS  Google Scholar 

  43. Kosar N, Ayub K, Gilani MA, Mahmood T (2019) Benchmark DFT studies on C-CN homolytic cleavage and screening the substitution effect on bond dissociation energy. J Mol Model 25:47. https://doi.org/10.1007/s00894-019-3930-x

    Article  CAS  Google Scholar 

  44. Alparone A (2011) Comparative study of CCSD(T) and DFT methods: electronic (hyper)polarizabilities of glycine. Chem Phys Lett 514:21–25. https://doi.org/10.1016/j.cplett.2011.08.010

    Article  CAS  Google Scholar 

  45. Jacquemin D, Adamo C (2011) Bond length alternation of conjugated oligomers: wave function and DFT benchmarks. J Chem Theory Comput 7:369–376. https://doi.org/10.1021/ct1006532

    Article  CAS  Google Scholar 

  46. Alparone A (2013) Linear and nonlinear optical properties of nucleic acid bases. Chem Phys 410:90–98. https://doi.org/10.1016/j.chemphys.2012.11.005

    Article  CAS  Google Scholar 

  47. Li X, Lu J (2019) Giant enhancement of electronic polarizability and the first hyperpolarizability of fluoride-decorated graphene versus graphyne and graphdiyne: insights from ab initio calculations. Phys Chem Chem Phys 21:13165–13175. https://doi.org/10.1039/C9CP01118H

    Article  CAS  Google Scholar 

  48. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2010) Gaussian 09, Rev. B. 01. Gaussian Inc., Wallingford

  49. Dennington R, Todd K, John M (2009) Gauss view, version 5. Semichem Inc., Shawnee Mission, KS, USA

    Google Scholar 

  50. Yang Y, Helili S, Kerim A (2022) A study of the aromaticity of thia[7]circulene isomers. Mol Phys 120:10. https://doi.org/10.1080/00268976.2022.2060146

  51. Liljefors T, Wennerström O (1977) Molecular mechanics calculations on the structures and conformational properties of [8]circulene and some related phane compounds. Tetrahedron 33:2999–3003. https://doi.org/10.1016/0040-4020(77)88037-X

    Article  CAS  Google Scholar 

  52. **ao WD, Zhang YY, Tao L, Aït-Mansour K, Chernichenko KY, Nenajdenko VG, Ruffieux P, Du SX, Gao H-J, Fasel R (2015) Impact of heterocirculene molecular symmetry upon two-dimensional crystallization. Sci Rep 4:5415. https://doi.org/10.1038/srep05415

    Article  CAS  Google Scholar 

  53. Agrawal BK, Agrawal S, Srivastava P, Singh S (2004) Ab-initio study of small silver nanoclusters. J Nanoparticle Res 6:363–368. https://doi.org/10.1023/B:NANO.0000046744.53994.4d

    Article  CAS  Google Scholar 

  54. Sumathi A, Rajaraman D, Bharanidharan S, Kabilan S, Krishnasamy K (2016) Spectroscopic investigations of 2-(4-chlorophenyl)-1-((furan-2-yl) methyl)-4,5-dimethyl-1H-imidazole - a DFT approach. Chem Sci Trans 5(3):827–835

  55. Zaier R, Ayachi S (2021) DFT molecular modeling studies of D-π-A-π-D type cyclopentadithiophene-diketopyrrolopyrrole based small molecules donor materials for organic photovoltaic cells. Optik (Stuttg) 239:166787. https://doi.org/10.1016/j.ijleo.2021.166787

    Article  CAS  Google Scholar 

  56. Arab A, Habibzadeh M (2015) Comparative hydrogen adsorption on the pure Al and mixed Al–Si nano clusters: a first principle DFT study, Comput. Theor Chem 1068:52–56. https://doi.org/10.1016/j.comptc.2015.06.021

    Article  CAS  Google Scholar 

  57. Shakerzadeh E (2018) Tailoring C24S12 and C16S8 sulflowers with lithium atom for the remarkable first hyperpolarizability. Chem Phys Lett 709:33–40. https://doi.org/10.1016/j.cplett.2018.08.039

    Article  CAS  Google Scholar 

  58. Kang S, Kim T, Lee JY (2021) New design strategy for chemically-stable blue phosphorescent materials: improving the energy gap between the T 1 and 3 MC states. Phys Chem Chem Phys 23:3543–3551. https://doi.org/10.1039/C9CP05781A

    Article  CAS  Google Scholar 

  59. Cagardová D, Lukeš V, Matúška J, Poliak P (2019) On local aromaticity of selected model aza-[n]circulenes (n = 6, 7, 8 and 9): density functional theoretical study. Acta Chim Slovaca 12:70–81. https://doi.org/10.2478/acs-2019-0011

    Article  CAS  Google Scholar 

  60. Irfan A, Al-Sehemi AG (2014) DFT study of the electronic and charge transfer properties of perfluoroarene–thiophene oligomers. J Saudi Chem Soc 18:574–580. https://doi.org/10.1016/j.jscs.2011.11.006

    Article  CAS  Google Scholar 

  61. Yildiko Ü, Ata AC, Cakmak İ (2020) Synthesis, spectral characterization and DFT calculations of novel macro MADIX agent: mechanism of addition-fragmentation reaction of xanthate compound. SN Appl Sci 2:1691. https://doi.org/10.1007/s42452-020-03495-3

    Article  CAS  Google Scholar 

  62. Mumit MA, Pal TK, Alam MA, Islam MAAAA, Paul S, Sheikh MC (2020) DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate. J Mol Struct 1220:128715. https://doi.org/10.1016/j.molstruc.2020.128715

    Article  CAS  Google Scholar 

  63. Murugavel S, Vetri Velan V, Kannan D, Bakthadoss M (2017) Synthesis of a novel methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-(2-methoxyphenyl)prop-2-enoate: molecular structure, spectral, antimicrobial, molecular docking and DFT computational approaches. J Mol Struct 1127:457–475. https://doi.org/10.1016/j.molstruc.2016.08.001

    Article  CAS  Google Scholar 

  64. Tarazkar M, Romanov DA, Levis RJ (2014) Higher-order nonlinearity of refractive index: the case of argon. J Chem Phys 140:214316. https://doi.org/10.1063/1.4880716

    Article  CAS  Google Scholar 

  65. Bree C, Demircan A, Steinmeyer G (2010) Method for computing the nonlinear refractive index via Keldysh theory. IEEE J Quantum Electron 46:433–437. https://doi.org/10.1109/JQE.2009.2031599

    Article  CAS  Google Scholar 

Download references

Funding

Financial support for this project was provided by the Higher Education Commission of Pakistan, COMSATS University, Abbottabad Campus, and University of Bahrain.

Author information

Authors and Affiliations

Authors

Contributions

Naveen Kosar, acquisition and analysis of data and manuscript drafting; Muhammad Arshad, acquisition and analysis of data; Mazhar Amjad Gilani and Khurshid Ayub, study conception and design and critical revision; and Tariq Mahmood, supervision, study conception and design, and critical revision.

Corresponding authors

Correspondence to Naveen Kosar or Tariq Mahmood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

NA

Consent to participate

NA

Consent for publication

All authors agree for the publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosar, N., Ayub, K., Gilani, M.A. et al. Shedding light on static and dynamic hyperpolarizabilities of thia[7&8]circulenes, toward their NLO applications. J Mol Model 28, 395 (2022). https://doi.org/10.1007/s00894-022-05386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05386-3

Keywords

Navigation