Log in

Electronic sensors for alkali and alkaline earth cations based on Fullerene-C60 and silicon doped on C60 nanocages: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this research, we have reported the electrical sensitivity of pristine C60 and silicon doped on C60 (SiC59) nanocages as sensors that can be used for detecting the presence of alkali (Li+, Na+, K+) and alkaline earth (Be2+, Mg2+, Ca2+) cations. The computations are carried out at the B3LYP level of theory with a 6-31G(d) basis set. The atoms in molecules (AIM) and natural bond orbital (NBO) analyses are performed to evaluate the intermolecular interactions between cations and nanocages. The physical properties of the selected complexes are also analyzed by the frontier molecular orbital, energy gap, electronegativity, chemical hardness, softness, and other quantities such as work function, number of transferred electron, and dipole moment. The results show that the adsorption process is exothermic and with increasing the charge of cations, the adsorption energies enhance. Our findings also reveal a decrease in the energy gap along with an increase in the electrical conductivity of the respective complexes. Finally, the density of state calculations is presented to confirm the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Code availability

Not applicable.

References

  1. Kroto W, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Zahedi E (2013) Adsorption of nitrogen dioxide on C30B15N15 heterofullerene: AIM and NBO study via DFT. C R Chimie 16:189–194

    Article  CAS  Google Scholar 

  3. Lalwani G, Sitharaman B (2013) Multifunctional fullerene and metallofullerene based nanobiomaterials. Nano LIFE 3:1342003

    Article  CAS  Google Scholar 

  4. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tools Manuf 122:55–65

    Article  Google Scholar 

  5. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H, Wang J (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram 45(12):14908–14920

    CAS  Google Scholar 

  6. Zhang Y, Li HN, Li C, Huang C, Ali HM, XU X, Mao C, Ding W, Cui X, Yang M, Yu T, Jamil M, Gupta MK, Jia D, Said Z (2022) Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction 10:803–841

  7. Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M (2016) Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chinese J Aeronaut 29(4):1084–1095

    Article  Google Scholar 

  8. Guo S, Li C, Zhang Y, Wang Y, Li B, Yang M, Zhang X, Liu G (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140:1060–1076

    Article  CAS  Google Scholar 

  9. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, Hou Y, Li R, Zhang N, Wu Q, Cao H (2018) Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J Clean Prod 193:236–248

    Article  CAS  Google Scholar 

  10. Rutherglen C, Jain D, Burke P (2009) Nanotube electronics for radiofrequency applications. Nat Nanotechnol 4:811–819

    Article  CAS  PubMed  Google Scholar 

  11. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  CAS  PubMed  Google Scholar 

  12. Motaung DE, Malgas GF, Arendse CJ (2011) Insights into the stability and thermal degradation of P3HT: C60 blended films for solar cell applications. J Mater Sci 46:4942–4952

    Article  CAS  Google Scholar 

  13. Haddon R (1992) Electronic structure, conductivity and superconductivity of alkali metal doped (C60). Acc Chem Res 25:127–133

    Article  CAS  Google Scholar 

  14. Vessally E, Farajzadeh P, Najafi E (2021) Possible sensing ability of boron nitride nanosheet and its Al– and Si–doped derivatives for methimazole drug by computational study. Iran J Chem Chem Eng 40:1001–1011

    CAS  Google Scholar 

  15. Vessally E, Musavi M, Poor Heravi MR (2021) A density functional theory study of adsorption ethionamide on the surface of the pristine, Si and Ga and Al-doped graphene. Iran J Chem Eng (IJCCE) 40‏ in Press

  16. Vessally E, Hosseinian A (2021) A computational study on some small graphene-like nanostructures as the anodes in Na−ion Batteries. Iran J Chem Chem Eng 40:691–703

    Google Scholar 

  17. Gharibzadeh F, Vessally E, Edjlali L, Es'haghi M, Mohammadi R (2020) A DFT study on sumanene, corannulene and nanosheet as the anodes in Li−Ion batteries. Iran J Chem Chem Eng 39:51-62

  18. Hashemzadeh B, Edjlali L, Delir Kheirollahi Nezhad P, Vessally E (2021) A DFT studies on a potential anode compound for Li-ion batteries: hexa-cata-hexabenzocoronene nanographen. Chem Rev Lett 4:232–238

    Google Scholar 

  19. Bosi S, Da Ros T, Castellano S, Banfi E, Prato M (2000) Antimycobacterial activity of ionic fullerene derivatives. Bioorg Med Chem Lett 10:1043–1045

    Article  CAS  PubMed  Google Scholar 

  20. Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL (1993) Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc 115:6506–6509

    Article  CAS  Google Scholar 

  21. Nakamura E, Tokuyama H, Yamago S, Shiraki T, Sugiura Y (1996) Biological activity of water-soluble fullerenes. Structural dependence of DNA cleavage, cytotoxicity, and enzyme inhibitory activities including HIV-protease inhibition. Bull Chem Soc Jpn 69:2143–2151

    Article  CAS  Google Scholar 

  22. Luo B, Liu G, Wang L (2016) Recent advances in 2D materials for photocatalysis. Nanoscale 8:6904–6920

    Article  CAS  PubMed  Google Scholar 

  23. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  24. Chen M, Guan R, Yang S (2019) Hybrids of fullerenes and 2D nanomaterials. Adv Sci (Weinh) 6:1800941

    Article  CAS  Google Scholar 

  25. Jalali Sarvestani MR, Charehjou P (2021) Fullerene (C20) as a potential adsorbent and sensor for the removal and detection of picric acid contaminant: a DFT Study. Cent Asian J Environ Sci Technol Innov 2(1):12–19

    Google Scholar 

  26. Onur Uygun Z, Ertuğrul Uygun HD (2020) Fullerene based sensor and biosensor technologies, In book: Nanosystems, IntechOpen

  27. Ren XY, Jiang CY (2012) Density functional studies on the endohedral complex of fullerene C70 with tetrahedrane (C4H4): C4H4@C70. J Mol Model 18:3213–3217

    Article  CAS  PubMed  Google Scholar 

  28. Alipour Zaghmarzi F, Zahedi M, Mola A, Abedini S, Arshadi S, Ahmadzadeh S, Etminan N, Younesi O, Rahmanifar E, Yoosefian M (2017) Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations. Physica E 87:51–58

    Article  CAS  Google Scholar 

  29. Zheng J, Ren Z, Guo P, Fang L, Fan J (2011) Diffusion of Li+ ion on graphene: a DFT study. Appl Surf Sci 258:1651–1655

    Article  CAS  Google Scholar 

  30. Sanghavi BJ, Varhue W, Rohani A, Liao KT, Bazydlo LA, Chou CF, Swami NS (2015) Ultrafast immunoassays by coupling dielectrophoretic biomarker enrichment in nanoslit channel with electrochemical detection on graphene. Lab Chip 15:4563–4570

    Article  CAS  PubMed  Google Scholar 

  31. Sanghavi BJ, Moore JA, Chávez JL, Hagen JA, Kelley-Loughnane N, Chou CF, Swami NS (2016) Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens Bioelectron 78:244–252

    Article  CAS  PubMed  Google Scholar 

  32. Sanghavi BJ, Varhue W, Chávez JL, Chou CF, Swami NS (2014) Electrokinetic preconcentration and detection of neuropeptides at patterned graphene-modified electrodes in a nanochannel. Anal Chem 86:4120–4125

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Tang Y, Zhang F, Lee C (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6(11):1502588

    Article  CAS  Google Scholar 

  34. Tong X, Zhang F, Ji B, Sheng M, Tang Y (2016) carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv Mater (Weinh) 28(45):9979–9985

    Article  CAS  Google Scholar 

  35. Ji B, Zhang F, Song X, Tang Y (2017) A novel potassium-ion-based dual-ion battery. Adv Mater (Weinh) 29(19):1700519

    Article  CAS  Google Scholar 

  36. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng HM (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10(6):667–672

    Article  CAS  PubMed  Google Scholar 

  37. Jiang L, Wang Y, Wang X, Ning F, Wen S, Zhou Y, Chen S, Betts A, Jerrams S, Zhou F (2021) Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses. Compos-A: Appl Sci Manuf 147:106461

  38. Li T, Yin W, Gao S, Sun Y, Xu P, Wu S, Kong H, Yang G, Wei G (2022) The combination of two-dimensional nanomaterials with metal oxide nanoparticles for gas sensors: a review. Nanomaterials 12(6):982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yan H, Zhao M, Feng X, Zhao S, Zhou X, Li S, Zha M, Meng F, Chen X, Liu Y, Chen D, Yan N, Yang C (2022) PO43- coordinated robust single-atom platinum catalyst for selective polyol oxidation. Angew Chem Int Ed e202116059

  40. Zhang R, Zhang W, Shi M, Li H, Ma L, Niu H (2022) Morphology controllable synthesis of heteroatoms-doped carbon materials for high-performance flexible supercapacitor. Dyes Pigm 199:109968

    Article  CAS  Google Scholar 

  41. Huang Z, Luo P, Zheng H (2022) Design of Ti4+-doped Li3V2(PO4)3/C fibers for lithium energy storage. Ceram 48(6):8325–8330

    CAS  Google Scholar 

  42. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1998) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  44. Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sens Actuators B Chem 161:1025–1029

    Article  CAS  Google Scholar 

  45. Beheshtian J, Kamfiroozi M, Bagheri Z, Ahmadi A (2012) Theoretical study of hydrogen adsorption on the B12P12 fullerene-like nanocluster. Comput Mater Sci 54:115–118

    Article  CAS  Google Scholar 

  46. Eid KM, Ammr HY (2011) Adsorption of SO2 on Li atoms deposited on MgO (1 0 0) surface: DFT calculations. Appl Surf Sci 257:6049–6058

    Article  CAS  Google Scholar 

  47. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) Reactivities of sites on (5, 5) single-walled carbon nanotubes with and without a Stone-Wales defect. J Chem Theory Comput 6:1351–1357

    Article  CAS  Google Scholar 

  48. Zhao TH, Castillo O, Jahanshahi H, Yusuf A, Alassafi MO, Alsaadi FE, Chu YM (2021) A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl Comput Math 20(1):160–176

    Google Scholar 

  49. Zhao TH, Wang MK, Hai GJ, Chu YM (2022) Landen inequalities for Gaussian hypergeometric function. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 116(1):1–23

  50. Nazeer M, Hussain F, Ijaz Khan M, Asad-ur-Rehman E-Z, Chu YM, Malik MY (2021) Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl Math Comput 420:126868

    Google Scholar 

  51. Zhao TH, Khan MI, Chu YM (2021) Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math Methods Appl Sci

  52. Zhao TH, Wang MK, Zhang W (2018) Chu YM (2018) Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl 1:251–266

    Article  Google Scholar 

  53. Chu YM, Nazir U, Sohail M, Selim MM, Lee JR (2021) Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract 5(3):119–136

    Article  Google Scholar 

  54. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  55. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  56. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  57. BieglerKönig F, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23:1489–1494

    Article  CAS  Google Scholar 

  58. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  59. Paul BK, Mahanta S, Singh RB, Guchhait N (2010) A DFT-based theoretical study on the photophysics of 4-hydroxyacridine: single-water-mediated excited state proton transfer. J Phys Chem A 114:2618–2627

    Article  CAS  PubMed  Google Scholar 

  60. O’Boyle N, Tenderholt A, Langner K (2008) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  PubMed  Google Scholar 

  61. Pearson RG (1997) Chemical Hardness. Wiley-VCH, Oxford

    Book  Google Scholar 

  62. Sen KD, Jorgensen CK (1987) Electronegativity, structure and bonding. Springer-Verlag, New York

    Google Scholar 

  63. Li S (2006) Semiconductor physical electronics, 2nd edn. Springer, USA

    Book  Google Scholar 

  64. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  65. Pacios LF (2004) Topological descriptors of the electron density and the electron localization function in hydrogen bond dimers at short intermonomer distances. J Phys Chem A 108:1177–1188

    Article  CAS  Google Scholar 

  66. Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97–102

    Article  CAS  Google Scholar 

  67. Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122:12835–12841

    Article  CAS  Google Scholar 

  68. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  69. Linares M, Humbel S, Braïda B (2007) Quantifying resonance through a Lewis Valence Bond approach: application to haloallyl and carbonylcations. Faraday Discuss RSC 135:273–283

    Article  CAS  Google Scholar 

  70. Salehi N, Vessally E, Edjlali L, Alkorta I, Eshaghi M (2020) Nan@Tetracyanoethylene (n=1-4) systems: sodium salt vs sodium electride. Chem Rev Lett 3:207–217

    CAS  Google Scholar 

  71. Sreerama L, Vessally E, Behmagham F (2020) Oxidative lactamization of amino alcohols: an overview. J Chem Lett 1:9–18

    Google Scholar 

  72. Majedi S, Sreerama L, Vessally E, Behmagham F (2020) Metal-free regioselective thiocyanation of (hetero) aromatic C-H bonds using ammonium thiocyanate: an overview. J Chem Lett 1:25–31

    Google Scholar 

  73. Ahmadi R, Kalateh K, Alizadeh R, Khoshtarkib Z, Amani V (2009) Tetra-kis(6-methyl-2,2′-bipyridine)-12 N, N′2 2 N, N′32 N, N′42 N, N′-tetra-nitrato-1:22 O:O′2:33 O:O′, O′′2: 33 O, O′:O′′3:42 O:O′-tetra-nitrato-14 O, O′42 O, O′-tetra-lead(II). Acta Crystallogr E 65:m1169–m1170

    Article  CAS  Google Scholar 

  74. Soleimani-Amiri S, Asadbeigi N, Badragheh S (2020) A theoretical approach to new triplet and quintet (nitrenoethynyl) alkylmethylenes, (nitrenoethynyl) alkylsilylenes, (nitrenoethynyl) alkylgermylenes. Iran J Chem Chem Eng (IJCCE) 39(4):39–52

    CAS  Google Scholar 

  75. Norouzi N, Ebadi AG, Bozorgian A, Vessally E, Hoseyni SJ (2021) Energy and exergy analysis of internal combustion engine performance of spark ignition for gasoline, methane, and hydrogen fuels. Iran J Chem Chem Eng (IJCCE) 40,‏ in Press

  76. Ma X, Kexin Z, Yonggang W, Ebadi AG, Toughani M (2021) Investigation of low-temperature lipase production and enzymatic properties of Aspergillus Niger. Iran J Chem Chem Eng (IJCCE) 40(4):1364–1374

    Google Scholar 

  77. Vessally E, Mohammadi S, Abdoli M, Hosseinian A, Ojaghloo P (2020) Convenient and robust metal-free synthesis of benzazole-2-ones through the reaction of aniline derivatives and sodium cyanate in aqueous medium. Iran J Chem Chem Eng (IJCCE) 39(5):11–19

    CAS  Google Scholar 

  78. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113

    Article  Google Scholar 

  79. Sanderson RT (1955) Partial charges on atoms in organic compounds. Science 121:207–208

    Article  CAS  PubMed  Google Scholar 

  80. Sanderson RT (1976) Chemical bonds and bond energy, 2nd edn. Academic Press, New York

    Google Scholar 

  81. Chattaraj PK, Lee H, Parr RG (1991) DFT-based quantitative prediction of regioselectivity: cycloaddition of nitrilimines to methyl propiolate. J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  82. Gázquez JL (1993) In Chemical hardness. Springer-Verlag, Berlin, Germany

    Google Scholar 

  83. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  84. Sridevi C, Shanthi G, Velraj G (2012) Structural, vibrational, electronic, NMR and reactivity analyses of 2-amino-4H-chromene3-carbonitrile (ACC) by ab initio HF and DFT calculations. Spectrochim Acta A Mol Biomol Spectrosc 89:46–54

    Article  CAS  PubMed  Google Scholar 

  85. Raissi H, Khanmohammadi A, Mollania F (2013) A theoretical DFT study on the structural parameters and intramolecular hydrogen-bond strength in substituted (Z)-N-(thionitrosomethylene) thiohydroxylamine systems. Bull Chem Soc Jpn 86:1261–1271

    Article  CAS  Google Scholar 

  86. Li X, Deng S, Fu H, Li T (2009) Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl. Electrochim Acta 54:4089–4098

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank from Payame Noor University, Tehran, Iran, for their supports.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Corresponding author

Correspondence to Mohammad Reza Poor Heravi.

Ethics declarations

Ethics approval

The manuscript is prepared in compliance with the Ethics in Publishing Policy as described in the Guide for Authors.

Consent to participate

The manuscript is approved by all authors for publication.

Consent for publication

The consent for publication was obtained from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, A., Poor Heravi, M.R. & Khanmohammadi, A. Electronic sensors for alkali and alkaline earth cations based on Fullerene-C60 and silicon doped on C60 nanocages: a computational study. J Mol Model 28, 148 (2022). https://doi.org/10.1007/s00894-022-05147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05147-2

Keywords

Navigation