Log in

A general RNA force field: comprehensive analysis of energy minima of molecular fragments of RNA

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Force fields are actively used to study RNA. Development of accurate force fields relies on a knowledge of how the variation of properties of molecules depends on their structure. Detailed scrutiny of RNA’s conformational preferences is needed to guide such development. Towards this end, minimum energy structures for each of a set of 16 small RNA-derived molecules were obtained by geometry optimization at the HF/6-31G(d,p), B3LYP/apc-1, and MP2/cc-pVDZ levels of theory. The number of minima computed for a given fragment was found to be related to both its size and flexibility. Atomic electrostatic multipole moments of atoms occurring in the [HO-P(O3)-CH2-] fragment of 30 sugar-phosphate-sugar geometries were calculated at the HF/6-31G(d,p) and B3LYP/apc-1 levels of theory, and the transferability of these properties between different conformations was investigated. The atomic multipole moments were found to be highly transferable between different conformations with small standard deviations. These results indicate necessary elements of the development of accurate RNA force fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Noller HF (2005) RNA structure: reading the ribosome. Science 309:1508–1514

    Article  CAS  PubMed  Google Scholar 

  2. Krutzfeldt J, Stoffel M (2006) MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab. 4:9–12

    Article  CAS  PubMed  Google Scholar 

  3. Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418:222–228

    Article  CAS  PubMed  Google Scholar 

  4. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  CAS  PubMed  Google Scholar 

  5. Scott WG (2007) Ribozymes. Curr Opin Struct Biol 17:280–286

    Article  CAS  PubMed  Google Scholar 

  6. Aduri R, Psciuk BT, Saro P, Taniga H, Schlegel HB, SantaLucia J (2007) AMBER force field parameters for the naturally occurring modified nucleosides in RNA. J Chem Theory Comput 3:1464–1475

    Article  CAS  PubMed  Google Scholar 

  7. Case DA, Cheatham 3rd TE, Darden T, Gohlke H, Luo R, Merz Jr KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brooks BR, Brooks 3rd CL, Mackerell Jr AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P. K. H. C., Mark, A. E., Scott, W. R., Tironi, I. G.(1996) Biomolecular simulation: the {GROMOS96} manual and user guide

  10. Zichi DA (1995) Molecular dynamics of RNA with the OPLS force field. Aqueous simulation of a hairpin containing a tetranucleotide loop. J Am Chem Soc 117:2957–2969

    Article  CAS  Google Scholar 

  11. Tubbs JD, Condon DE, Kennedy SD, Hauser M, Bevilacqua PC, Turner DH (2013) The nuclear magnetic resonance of CCCC RNA reveals a right-handed Helix, and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics. Biochemistry 52:996–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt JR, Yu K, McDaniel JG (2015) Transferable next-generation force fields from simple liquids to complex materials. Acc Chem Res 48:548–556

    Article  CAS  PubMed  Google Scholar 

  13. Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, Keating KS, Pyle AM, Micallef D, Westbrook J, Berman HM, Consortium RNAO (2008) RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA ontology consortium contribution). RNA 14:465–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Refinement of the AMBER force-field for nucleic acid simulations. Improving the description of α/β conformers. Biophys J 92:3817–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yildirim I, Stern HA, Kennedy SD, Tubbs JD, Turner DH (2010) Reparameterization of RNA chi torsion parameters for the AMBER force field and comparison to NMR spectra for cytidine and uridine. J Chem Theory Comput 6:1520–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, Sponer J, Otyepka M (2010) Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J Chem Theory Comput 6:3836–3849

    Article  CAS  Google Scholar 

  17. Denning EJ, Priyakumar UD, Nilsson L, Mackerell Jr AD (2011) Impact of 2′-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA. J Comput Chem 32:1929–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, Jurecka P (2011) Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput 7:2886–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wales DJ, Yildirim I (2017) Improving computational predictions of single-stranded RNA tetramers with revised α/γ torsional parameters for the Amber force field. J Phys Chem B 121:2989–2999

    Article  CAS  PubMed  Google Scholar 

  20. Robertson MJ, Tirado-Rives J, Jorgensen WL (2017) Improved treatment of nucleosides and nucleotides in the OPLS-AA force field. Chem Phys Lett 683:276–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yildirim I, Stern HA, Tubbs JD, Kennedy SD, Turner DH (2011) Benchmarking AMBER force fields for RNA: comparisons to NMR spectra for single-stranded r (GACC) are improved by revised χ torsions. J Phys Chem B 115:9261–9270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yildirim I, Kennedy SD, Stern HA, Hart JM, Kierzek R, Turner DH (2012) Revision of AMBER torsional parameters for RNA improves free energy predictions for tetramer duplexes with GC and iGiC base pairs. J Chem Theory Comput 8:172–181

    Article  CAS  PubMed  Google Scholar 

  23. Kuhrova P, Mlynsky V, Zgarbova M, Krepl M, Bussi G, Best RB, Otyepka M, Sponer J, Banas P (2019) Improving the performance of the Amber RNA force field by tuning the hydrogen-bonding interactions. J Chem Theory Comput 15:3288–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuhrova P, Mlynsky V, Zgarbova M, Krepl M, Bussi G, Best RB, Otyepka M, Sponer J, Banas P (2020) Correction to “improving the performance of the Amber RNA force field by tuning the hydrogen-bonding interactions”. J Chem Theory Comput 16:818–819 erratum

    Article  CAS  PubMed  Google Scholar 

  25. Sponer J, Bussi G, Krepl M, Banas P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurecka P, Walter NG, Otyepka M (2018) RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev 118:4177–4338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Svozil D, Sponer JE, Marchan I, Perez A, Cheatham 3rd TE, Forti F, Luque FJ, Orozco M, Sponer J (2008) Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids. J Phys Chem B 112:8188–8197

    Article  CAS  PubMed  Google Scholar 

  27. Sponer J, Mladek A, Sponer JE, Svozil D, Zgarbova M, Banas P, Jurecka P, Otyepka M (2012) The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Phys Chem Chem Phys 14:15257–15277

    Article  CAS  PubMed  Google Scholar 

  28. Schneider B, Neidle S, Berman HM (1997) Conformations of the sugar-phosphate backbone in helical DNA crystal structures. Biopolymers 42:113–124

    Article  CAS  PubMed  Google Scholar 

  29. Antson AA, Dodson EJ, Dodson G, Greaves RB, Chen X, Gollnick P (1999) Structure of the Trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature 401:235–242

    Article  CAS  PubMed  Google Scholar 

  30. Mladek A, Banas P, Jureccka P, Otyepka M, Zgarbova M, Sponer J (2014) Energies and 2′-hydroxyl group orientations of RNA backbone conformations. Benchmark CCSD (T)/CBS database, electronic analysis, and assessment of DFT methods and MD simulations. J Chem Theory Comput 10:463–480

    Article  CAS  PubMed  Google Scholar 

  31. Gorb L, Podolyan Y, Dziekonski P, Sokalski WA, Leszczynski J (2004) Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-hartree-fock ab initio study. J Am Chem Soc 126:10119–10129

    Article  CAS  PubMed  Google Scholar 

  32. Kelly REA, Kantorovich LN (2006) Planar nucleic acid base super-structures. J Mater Chem 16:1894–1905

    Article  CAS  Google Scholar 

  33. Sharma P, Lait LA, Wetmore SD (2013) yDNA versus yyDNA pyrimidines: computational analysis of the effects of unidirectional ring expansion on the preferred sugar-base orientation, hydrogen-bonding interactions and stacking abilities. Phys Chem Chem Phys 15:2435–2448

    Article  CAS  PubMed  Google Scholar 

  34. MacKerell Jr AD (2009) Contribution of the intrinsic mechanical energy of the phosphodiester linkage to the relative stability of the a, BI, and BII forms of duplex DNA. J Phys Chem B 113:3235–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ode H, Matsuo Y, Neya S, Hoshino T (2008) Force field parameters for rotation around chi torsion axis in nucleic acids. J Comput Chem. 29:2531–2542

    Article  CAS  PubMed  Google Scholar 

  36. Zgarbova M, Luque FJ, Sponer J, Cheatham TE, Otyepka M, Jurecka P (2013) Toward improved description of DNA backbone: revisiting epsilon and zeta torsion force field parameters. J Chem Theory Comput 9:2339–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Savelyev A, MacKerell Jr AD (2014) All-atom polarizable force field for DNA based on the classical Drude oscillator model. J Comput Chem 35:1219–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114:2549–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Ponomarev SY, Sa Q, Sigalovsky DL, Kaminski GA (2013) Polarizable simulations with second order interaction model (POSSIM) force field: develo** parameters for protein sidechain analogues. J Comput Chem 34:1241–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gresh N, Naseem-Khan S, Lagardere L, Piquemal J-P, Sponer JE, Sponer J (2017) Channeling through two stacked guanine quartets of one and two alkali cations in the Li+, Na+, K+, and Rb+ series. Assessment of the accuracy of the SIBFA anisotropic polarizable molecular mechanics potential. J Phys Chem B 121:3997–4014

    Article  CAS  PubMed  Google Scholar 

  41. Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 107:5933–5947

    Article  CAS  Google Scholar 

  42. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio Jr RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T (2010) Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 114:2549–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ren P, Wu C, Ponder JW (2011) Polarizable atomic multipole-based molecular mechanics for organic molecules. J. Chem. Theory Comput. 7:3143–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi Y, **a Z, Zhang J, Best R, Wu C, Ponder JW, Ren P (2013) Polarizable atomic multipole-based AMOEBA force field for proteins. J. Chem. Theory Comput. 9:4046–4063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang C, Lu C, **g Z, Wu C, Piquemal JP, Ponder JW, Ren P (2018) AMOEBA polarizable atomic multipole force field for nucleic acids. J. Chem. Theory Comput. 14:2084–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Savelyev A, MacKerell Jr AD (2014) All-atom polarizable force field for DNA based on the classical Drude oscillator model. J. Comput. Chem. 35:1219–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lemkul, J. A., MacKerell, A. D. Jr.(2017) Polarizable force field for DNA based on the classical Drude oscillator: I. Refinement using quantum mechanical base stacking and conformational energetics. J. Chem. Theory Comput., 13:2053–2071

  48. Lemkul JA, MacKerell Jr AD (2017) Polarizable force field for DNA based on the classical Drude oscillator: II. Microsecond molecular dynamics simulations of duplex DNA. J. Chem. Theory Comput 13:2072–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lemkul JA, MacKerell Jr AD (2018) Polarizable force field for RNA based on the classical Drude oscillator. J. Comput. Chem. 39:2624–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Poirier R, Kari R, Csizmadia IG (1985) Handbook of Gaussian basis sets : a compendium for ab-initio molecular orbital calculations. Elsevier, Amsterdam

    Google Scholar 

  51. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev. Mod. Phys. 23:69–89

    Article  CAS  Google Scholar 

  52. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys 54:724–728

    Article  CAS  Google Scholar 

  53. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys 56:2257–2261

    Article  CAS  Google Scholar 

  54. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28:213–222

    Article  CAS  Google Scholar 

  55. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys 77:3654–3665

    Article  CAS  Google Scholar 

  56. Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1982) Self-consistent molecular-orbital methods. 22. Small Split-valence basis sets for second-row elements. J. Am. Chem. Soc. 104:2797–2803

    Article  CAS  Google Scholar 

  57. Jensen F (2002) Polarization consistent basis sets. III. The importance of diffuse functions. J. Chem. Phys 117:9234–9240

    Article  CAS  Google Scholar 

  58. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58:1200–1211

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:785–789

    Article  CAS  Google Scholar 

  60. Becke, A. D.(1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98:5648–5652

  61. Jensen F (2001) Polarization consistent basis sets: principles. J. Chem. Phys. 115:9113–9125

    Article  CAS  Google Scholar 

  62. Jensen, F.(2002) Polarization consistent basis sets. II. Estimating the Kohn–Sham basis set limit. J. Chem. Phys., 116:7372–7379

  63. Jensen, F., Helgaker, T.(2004) Polarization consistent basis sets. V. The elements Si-Cl. J. Chem. Phys., 121:3463–3470

  64. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys 90:1007–1023

    Article  CAS  Google Scholar 

  65. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys. Rev. 46:618–622

    Article  Google Scholar 

  66. Head-Gordon M, Pople J, Frisch M (1988) MP2 energy evaluation by direct methods. Chem. Phys. Lett. 153:503–506

    Article  CAS  Google Scholar 

  67. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational circular dichroism spectra using large basis set MP2 force fields. Chem. Phys. Lett. 225:247–257

    Article  CAS  Google Scholar 

  68. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys 98:1358–1371

    Article  CAS  Google Scholar 

  69. Yuan Y, Mills MJ, Popelier PLA, Jensen F (2014) Comprehensive analysis of energy minima of the 20 natural amino acids. J. Phys. Chem. A 118:7876–7891

    Article  CAS  PubMed  Google Scholar 

  70. Yuan Y, Zhang Z, Mills MJL, Hu R, Zhang R (2018) Assessing force field potential energy function accuracy via a multipolar description of atomic electrostatic interactions in RNA. J. Chem. Inf. Model. 58:2239–2254

    Article  CAS  PubMed  Google Scholar 

  71. Roost C, Lynch SR, Batista PJ, Qu K, Chang HY, Kool ET (2015) Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137:2107–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Popelier PLA, Logothetis G (1998) Characterization of an agostic bond on the basis of the electron density. J. Organomet. Chem. 555:101–111

    Article  CAS  Google Scholar 

  73. Frisch MJ, Truchs GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Schmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2015) Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford

    Google Scholar 

  74. Jakli I, Perczel A, Farkas O, Hollosi M, Csizmadia IG (1998) Peptide models XXII. A conformational model for aromatic amino acid residues in proteins. A comprehensive analysis of all the RHF/6–31+G* conformers of for-L-Phe–NH2. J. Mol. Struct.: THEOCHEM 455:303–314

    Article  CAS  Google Scholar 

  75. Baldoni HA, Rodriguez AM, Zamora MA, Zamarbide GN, Enriz RD, Farkas Ö, Csàszàr P, Torday LL, Sosa CP, Jàkli I (1999) Peptide models XXIV: an Ab initio study on N-formyl-L-prolinamide with trans peptide bond. The existence or non-existence of αL and ϵL conformations. J. Mol. Struct.: THEOCHEM 465:79–91

    Article  CAS  Google Scholar 

  76. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford, Oxford University Press

    Google Scholar 

  77. Popelier PLA (2000) Atoms in molecules. An introduction. London, Pearson Education

    Google Scholar 

  78. Keith, T. A., AIMAll, 1997-2019. Available at: http://aim.tkgristmill.com. Accessed 1 Mar 2020

Download references

Availability of data and material

N/A

Code availability

N/A

Funding

This work was supported by the National Natural Science Foundation of China (No. 21503101), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2019-cd05), the National Natural Science Foundation of China (No.81973786), and the Science Foundation of Guangxi (AA17204096, AD16380076).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Yongna Yuan or Chunyan Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supporting Information Available: Supporting Information contains Cartesian coordinates of all the 22 B3LYP/apc-1 minima of SPS.

ESM 1

(DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Mills, M.J.L., Zhang, Z. et al. A general RNA force field: comprehensive analysis of energy minima of molecular fragments of RNA. J Mol Model 27, 137 (2021). https://doi.org/10.1007/s00894-021-04746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04746-9

Keywords

Navigation