Log in

Studying of the adsorption and diffusion behaviors of methane on graphene oxide by molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the sorption and diffusion behaviors of the methane on graphene oxide (GO) were investigated by molecular dynamics (MD) simulation. The sorption isotherms at different temperatures were calculated using the Grand Canonical Monte Carlo (GCMC) method and using the Langmuir adsorption model to fit those isotherms. To investigate the effect of the number of graphene oxide layers on the adsorption process, methane adsorption isotherms were calculated for graphene oxide with 1, 2, and 3 layers. The adsorption parameters including Langmuir adsorption constant, the entropy and the enthalpy of adsorption, collision flux, the rate of adsorption, and the rate of desorption were investigated in this work. The highest amount of adsorption calculated is related to graphene oxide three layers. The methane diffusion coefficients and diffusion activation energies were estimated at different temperatures by MD simulation coupled with Einstein relationship. The maximum diffusion coefficient calculated of methane at 348 K was 49 × 10−10 m2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Delavar M, Ghoreyshi A, Jahanshahi M, Nabian N (2014) Comparative experimental study of methane adsorption on multi-walled carbon nanotubes and granular activated carbons. J Exp Nanosci 9:310–328

    Article  CAS  Google Scholar 

  2. Wood CD, Tan B, Trewin A, Su F, Rosseinsky MJ, Bradshaw D et al (2008) Microporous organic polymers for methane storage. Adv Mater 20:1916–1921

    Article  CAS  Google Scholar 

  3. Nakhaei Pour A, Karimi J, Keyvanloo Z, Hashemian M (2016) Size dependence adsorption of hydrogen on cobalt clusters: a DFT study. J Nano Res: Trans Tech Publ 42:100–111. https://doi.org/10.4028/www.scientific.net/jnanor.42.100

    Article  Google Scholar 

  4. Nakhaei Pour A, Keyvanloo Z, Izadyar M, Modaresi SM (2015) Dissociative hydrogen adsorption on the cubic cobalt surfaces: a DFT study. Int J Hydrog Energy 40:7064–7071

    Article  CAS  Google Scholar 

  5. Davoodian N, Nakhaei Pour A, Izadyar M, Mohammadi A, Salimi A, Kamali Shahri SM (2020) Fischer-Tropsch synthesis using zeolitic imidazolate framework (ZIF-7 and ZIF-8)-supported cobalt catalysts. Appl Organomet Chem 34:e5747. https://doi.org/10.1002/aoc.5747

    Article  CAS  Google Scholar 

  6. Torshizi HO, Nakhaei Pour A, Mohammadi A, Zamani Y (2020) Fischer–Tropsch synthesis using a cobalt catalyst supported on graphitic carbon nitride. New J Chem 44:6053–6062

    Article  Google Scholar 

  7. Choi P-S, Jeong J-M, Choi Y-K, Kim M-S, Shin G-J, Park S-J (2016) A review: methane capture by nanoporous carbon materials for automobiles. Carbon Lett 17:18–28

    Article  Google Scholar 

  8. Yun SM, Kim JW, ** HK, Kim YH, Lee YS (2008) Methane storage on surface modified activated carbons. Solid State Phenomena, vol. 135. Solid State Phenom: Trans Tech Publ 73–76. https://doi.org/10.4028/www.scientific.net/ssp.135.73

  9. Mousavi M, Nakhaei Pour A, Gholizadeh M (2020) Effect of “magnetized water” on size of nickel oxide nanoparticles and their catalytic properties in CO2 reforming of methane. Theor Exp Chem 55:414–422. https://doi.org/10.1007/s11237-020-09634-6

    Article  CAS  Google Scholar 

  10. Mousavi M, Nakhaei Pour A, Gholizadeh M, Mohammadi A, Kamali Shahri SM (2020) Dry reforming of methane by La0.5Sr0.5NiO3 perovskite oxides: influence of preparation method on performance and structural features of the catalysts. J Chem Technol Biotechnol 95:2911–2920. https://doi.org/10.1002/jctb.6451

    Article  CAS  Google Scholar 

  11. Kumar KV, Preuss K, Titirici M-M, Rodríguez-Reinoso F (2017) Nanoporous materials for the onboard storage of natural gas. Chem Rev 117:1796–1825

    Article  CAS  Google Scholar 

  12. Makal TA, Li J-R, Lu W, Zhou H-C (2012) Methane storage in advanced porous materials. Chem Soc Rev 41:7761–7779

    Article  CAS  Google Scholar 

  13. Zhu Z, Zheng Q (2016) Methane adsorption on the graphene sheets, activated carbon and carbon black. Appl Therm Eng 108:605–613

    Article  CAS  Google Scholar 

  14. Yang N, Yang D, Chen L, Liu D, Cai M, Fan X (2017) A novel interconnected structure of graphene-carbon nanotubes for the application of methane adsorption. IEEE Sensors J 18:1555–1561

    Article  Google Scholar 

  15. Spanopoulos I, Tsangarakis C, Klontzas E, Tylianakis E, Froudakis G, Adil K et al (2016) Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J Am Chem Soc 138:1568–1574

    Article  CAS  Google Scholar 

  16. Liu J, Zou R, Zhao Y (2016) Recent developments in porous materials for H2 and CH4 storage. Tetrahedron Lett 57:4873–4881

    Article  CAS  Google Scholar 

  17. Zhao R, Li X, Su J, Gao X (2017) Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization. Appl Surf Sci 392:810–816

    Article  CAS  Google Scholar 

  18. Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4:2911–2934

    Article  CAS  Google Scholar 

  19. Pandele AM, IONIŢĂ M, Iovu H (2014) Molecular modeling of mechanical properties of the chitosan based graphene composites. UPB Sci Bull Ser B 76:107–112

    Google Scholar 

  20. Rostami S, Nakhaei Pour A, Izadyar M (2018) A review on modified carbon materials as promising agents for hydrogen storage. Sci Prog 101(2):171–191. https://doi.org/10.3184/003685018X15173975498956

  21. Rostami S, Nakhaei Pour A, Izadyar M (2019) Hydrogen adsorption by g-C3N4 and graphene oxide nanosheets. J Nanostruct 9:498–509

    CAS  Google Scholar 

  22. Badiei E, Sangpour P, Bagheri M, Pazouki M (2014) Graphene oxide antibacterial sheets: synthesis and characterization. Int J Eng Trans C 27:1803–1808

    Google Scholar 

  23. Mahdavi M, Rahmani F, Nouranian S (2016) Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems. J Mater Chem B 4:7441–7451

    Article  CAS  Google Scholar 

  24. Torshizi HO, Nakhaei Pour A, Mohammadi A et al (2020) Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support and metal nanoparticle size on catalyst activity and products selectivity. Front Chem Sci Eng. https://doi.org/10.1007/s11705-020-1925-x

    Article  Google Scholar 

  25. Chakraborty T, Hens A, Kulashrestha S, Murmu NC, Banerjee P (2015) Calculation of diffusion coefficient of long chain molecules using molecular dynamics. Physica E: Low-Dimens Syst Nanostruct 69:371–377

    Article  CAS  Google Scholar 

  26. Hu H, Li X, Fang Z, Wei N, Li Q (2010) Small-molecule gas sorption and diffusion in coal: molecular simulation. Energy. 35:2939–2944

    Article  CAS  Google Scholar 

  27. Xu J, **ng W, Zhao L, Guo F, Wu X, Xu W et al (2015) The CO2 storage capacity of the intercalated diaminoalkane graphene oxides: a combination of experimental and simulation studies. Nanoscale Res Lett 10:318

    Article  Google Scholar 

  28. Rizzuto C, Caravella A, Brunetti A, Park CH, Lee YM, Drioli E et al (2017) Sorption and diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: a molecular investigation. J Membr Sci 528:135–146

    Article  CAS  Google Scholar 

  29. Son H-J, Lim Y-i (2008) Multiscale simulation starting at the molecular level for adsorption process development. Chin J Chem Eng 16:108–111

    Article  CAS  Google Scholar 

  30. Zhang J, Clennell M, Dewhurst D, Liu K (2014) Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal. Fuel. 122:186–197

    Article  CAS  Google Scholar 

  31. Yang Y, Liu J, Yao J, Kou J, Li Z, Wu T et al (2020) Adsorption behaviors of shale oil in kerogen slit by molecular simulation. Chem Eng J 387:124054

    Article  CAS  Google Scholar 

  32. Akkermans RL, Spenley NA, Robertson SH (2013) Monte Carlo methods in materials studio. Mol Simul 39:1153–1164

    Article  CAS  Google Scholar 

  33. Sharif M, Zhang T, Wu X, Yu Y, Zhang Z (2020) Evaluation of CO2 absorption performance by molecular dynamic simulation for mixed secondary and tertiary amines. Int J Greenhouse Gas Control 97:103059

    Article  CAS  Google Scholar 

  34. Dyer T, Thamwattana N, Jalili R (2015) Modelling the interaction of graphene oxide using an atomistic-continuum model. RSC Adv 5:77062–77070

    Article  CAS  Google Scholar 

  35. Peng Y, Li J (2013) Ammonia adsorption on graphene and graphene oxide: a first-principles study. Front Environ Sci Eng 7:403–411

    Article  CAS  Google Scholar 

  36. Gui Y, Hao Z, Li X, Tang C, Xu L (2019) Gas sensing of graphene and graphene oxide nanoplatelets to ClO2 and its decomposed species. Superlattice Microst 135:106248

    Article  CAS  Google Scholar 

  37. Accelrys (2014) AccelrysMaterialStudio Version 7. Accelrys Inc., San Diego, California

    Google Scholar 

  38. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  39. Yang JZ, Liu QL, Wang HT (2007) Analyzing adsorption and diffusion behaviors of ethanol/water through silicalite membranes by molecular simulation. J Membr Sci 291:1–9

    Article  CAS  Google Scholar 

  40. Jiao S, Xu Z (2015) Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study. ACS Appl Mater Interfaces 7:9052–9059

    Article  CAS  Google Scholar 

  41. Rostami S, Nakhaei Pour A, Salimi A, Abolghasempour A (2018) Hydrogen adsorption in metal-organic frameworks (MOFs): effects of adsorbent architecture. Int J Hydrog Energy 43:7072–7080

    Article  CAS  Google Scholar 

  42. Ranke W, Joseph Y (2002) Determination of adsorption energies and kinetic parameters by isosteric methods. Phys Chem Chem Phys 4:2483–2498

    Article  CAS  Google Scholar 

  43. Swenson H, Stadie NP (2019) Langmuir’s theory of adsorption: a centennial review. Langmuir. 35:5409–5426

    Article  CAS  Google Scholar 

  44. Christmann K (1991) Introduction to surface physical chemistry. Steinkopff Verlag, Darmstadt

    Book  Google Scholar 

Download references

Funding

The authors of this work received financial support from the Ferdowsi University of Mashhad, Iran (Grant No. 3/48953-14/12/97).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, Z., Nakhaei Pour, A. Studying of the adsorption and diffusion behaviors of methane on graphene oxide by molecular dynamics simulation. J Mol Model 27, 59 (2021). https://doi.org/10.1007/s00894-021-04692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04692-6

Keywords

Navigation