Log in

N\(_{3}^{-}\) azide anion confined inside finite-size carbon nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the confinement of an N\(_{3}^{-}\) azide anion inside finite-size single-wall zigzag and armchair carbon nanotubes of different diameters has been studied by wave function and density functional theory. Unrelaxed and relaxed interaction energies have been computed, resulting in a favorable interaction between the guest and host system. In particular, the largest interaction has been observed for the confinement in an armchair (5,5) carbon nanotube, for which a natural population analysis as well as an investigation based on the molecular electrostatic potential has been carried out. The nature of the interaction between the two fragments appears to be mainly electrostatic, favored by the enhanced polarizability of the nanotube wall treated as a finite system and passivated by hydrogen atoms. The results obtained are promising for possible applications of this complex as a starting point for the stabilization of larger polynitrogen compounds, suitable as a high-energy density material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Samartzis PC, Wodtke AM (2006) All-nitrogen chemistry: how far are we from N60. Int Rev Phys Chem 25(4):527–552. https://doi.org/10.1080/01442350600879319

    Article  CAS  Google Scholar 

  2. Zarko VE (2010) Searching for ways to create energetic materials based on polynitrogen compounds (review). Combust Explos Shock Waves 46(2):121–131. https://doi.org/10.1007/s10573-010-0020-x

    Article  Google Scholar 

  3. Curtius T (1890) Ueber stickstoffwasserstoffsäure (azoimid) n3h. Berichte der Dtsch Chem Gesellschaft 23(2):3023–3033. https://doi.org/10.1002/cber.189002302232

    Article  Google Scholar 

  4. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) \(\mathrm {N}_{5}^{+}\): a novel homoleptic polynitrogen ion as a high energy density material. Angew Chemie Int Ed 38(13/14):2004–2009. https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<2004::AID-ANIE2004>3.0.CO;2-7

    Article  CAS  Google Scholar 

  5. Fau S, Bartlett RJ (2001) Possible products of the end-on addition of \(\mathrm {N}_{3}^{-}\) to \(\mathrm {N}_{5}^{+}\) and their stability. J Phys Chem A 105(16):4096–4106. https://doi.org/10.1021/jp003970h

    Article  CAS  Google Scholar 

  6. Gagliardi L, Orlandi G, Evangelisti S, Roos BO (2001) A theoretical study of the nitrogen clusters formed from the ions \(\mathrm {N}_{3}^{-}\), \(\mathrm {N}_{5}^{+}\), and \(\mathrm {N}_{5}^{-}\). J Chem Phys 114(24):10,733–10,737. https://doi.org/10.1063/1.1370063

    Article  CAS  Google Scholar 

  7. Evangelisti S, Leininger T (2003) Ionic nitrogen clusters. J Mol Struct THEOCHEM 621(1-2):43–50. https://doi.org/10.1016/S0166-1280(02)00532-8

    Article  CAS  Google Scholar 

  8. Dixon DA, Feller D, Christe KO, Wilson WW, Vij A, Vij V, Jenkins HDB, Olson RM, Gordon MS (2004) Enthalpies of formation of gas-phase N3, \(\mathrm {N}_{3}^{-}\), \(\mathrm {N}_{5}^{+}\), and \(\mathrm {N}_{5}^{-}\) from ab initio molecular orbital theory, stability predictions for \(\mathrm {N}_{5}^{+}\mathrm {N}_{3}^{-}\) and \(\mathrm {N}_{5}^{+}\mathrm {N}_{5}^{-}\), and experimental evidence for the instability of \(\mathrm {N}_{5}^{+}\mathrm {N}_{3}^{-}\). J Am Chem Soc 126(3):834–843. https://doi.org/10.1021/ja0303182

    Article  CAS  PubMed  Google Scholar 

  9. Abou-Rachid H, Hu A, Timoshevskii V, Song Y, Lussier LS (2008) Nanoscale high energetic materials: a polymeric nitrogen chain N8 confined inside a carbon nanotube. Phys Rev Lett 100(19):196,401. https://doi.org/10.1103/PhysRevLett.100.196401

    Article  CAS  Google Scholar 

  10. Ji W, Timoshevskii V, Guo H, Abou-Rachid H, Lussier L (2009) Thermal stability and formation barrier of a high-energetic material N8 polymer nitrogen encapsulated in (5,5) carbon nanotube. Appl Phys Lett 95 (2):021,904. https://doi.org/10.1063/1.3162334

    Article  CAS  Google Scholar 

  11. Zheng F, Yang Y, Zhang P (2012) Polymeric nitrogen chains confined in carbon nanotube bundle. Int J Mod Phys B 26(18):1250,047. https://doi.org/10.1142/S0217979212500476

    Article  CAS  Google Scholar 

  12. Liu S, Yao M, Ma F, Liu B, Yao Z, Liu R, Cui T, Liu B (2016) High energetic polymeric nitrogen stabilized in the confinement of boron nitride nanotube at ambient conditions. J Phys Chem C 120(30):16,412–16,417. https://doi.org/10.1021/acs.jpcc.6b04374

    Article  CAS  Google Scholar 

  13. Wu Z, Benchafia EM, Iqbal Z, Wang X (2014) \(\mathrm {N}_{8}^{-}\) polynitrogen stabilized on multi-wall carbon nanotubes for oxygen-reduction reactions at ambient conditions. Angew Chemie - Int Ed 126:12,763–12,767. https://doi.org/10.1002/anie.201403060

    Article  CAS  Google Scholar 

  14. Sharma H, Garg I, Dharamvir K, **dal VK (2010) Structure of polynitrogen clusters encapsulated in C60: a density functional study. J Phys Chem C 114(19):9153–9160. https://doi.org/10.1021/jp908755r

    Article  CAS  Google Scholar 

  15. Xu B, Pan BC (2009) Study of gallium fragments encapsulated in single-walled carbon nanotubes. J Phys Chem C 113(2):567–570. https://doi.org/10.1021/jp807477a

    Article  CAS  Google Scholar 

  16. Garg I, Sharma H, Dharamvir K, **dal VK (2010) DFT study Of Al n (1-13) clusters encapsulated inside single walled carbon nanotubes. J Phys Chem C 114(44):18,762–18,772. https://doi.org/10.1021/jp1036475

    Article  CAS  Google Scholar 

  17. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  18. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98 (7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  20. Hehre WJ, Ditchfield R, Stewart RF, Pople JA (1969) Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J Chem Phys 51(6):2657–2664. https://doi.org/10.1063/1.1673374

    Article  CAS  Google Scholar 

  21. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  22. Austin A, Petersson GA, Frisch MJ, Dobek FJ, Scalmani G, Throssell K (2012) A density functional with spherical atom dispersion terms. J Chem Theory Comput 8(12):4989–5007. https://doi.org/10.1021/ct300778e

    Article  CAS  PubMed  Google Scholar 

  23. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip Rev Comput Mol Sci 2(2):242–253. https://doi.org/10.1002/wcms.82

    Article  CAS  Google Scholar 

  24. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Győrffy W, Kats D, Korona T, Lindh R, Mitrushenkov AO, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2015) MOLPRO, version 2015.1 a package of ab initio programs. http://www.molpro.net

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö., Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian 09 revision d.01. http://www.gaussian.com

  26. Glendening ED, Badenhoop JK, Reed AD, Carpenter JE, Weinhold F NBO Version 3.1

  27. Vogadro: an open-source molecular builder and visualization tool. Version 1.2.0. http://avogadro.cc/

  28. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1):17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dennington R, Keith T, Millam J (2009) GaussView Version 5

  30. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no642294. The calculations of this contribution have been performed under the grant 2016-p1048 at the HPC center CALMIP and the local computing cluster of the Laboratoire de Physique et Chimie Quantiques of Toulouse. N. F.-L. acknowledges financial support from Fondazione Cassa di Risparmio di Perugia (P 2014/1255, ACT 2014/6167). Finally, the authors wish to thank O. Brea for her contributions to the graphical material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Leininger.

Additional information

This paper belongs to Topical Collection QUITEL 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battaglia, S., Evangelisti, S., Faginas-Lago, N. et al. N\(_{3}^{-}\) azide anion confined inside finite-size carbon nanotubes. J Mol Model 23, 294 (2017). https://doi.org/10.1007/s00894-017-3468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3468-8

Keywords

Navigation