Log in

Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Elucidating the mechanisms for morphological transitions of the phospholipid bilayer membrane during cellular activity should lead to greater understanding of these membrane transitions and allow us to optimize biotechnologies such as drug delivery systems in organisms. To investigate the mechanism for and the dynamics of morphological changes in the phospholipid membrane, we performed molecular dynamics simulation of a phospholipid membrane with and without membrane protein under the influence of electric fields with different strengths. In the absence of membrane protein, it was possible to control the transition from one lamellar membrane morphology to another by applying a strong electric field. The strong electric field initially disordered the lipid molecules in the membrane, leading to the formation of a hydrophilic pore. The lipid molecules then spontaneously fused into a new lamellar membrane morphology. In the presence of membrane protein, a morphological transition from lamellar membrane to vesicle under the influence of a strong electric field was observed. Studying the complex transition dynamics associated with these changes in membrane morphology allowed us to gain deep insight into the electrofusion and electroporation that occur in the presence or absence of membrane protein, and the results obtained here should prove useful in work aimed at controlling membrane morphology.

Memebrane morphological transition under the electric field of 0.6 V/nm with the membrane protein (down) and without membrane protein (up)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–d
Fig. 7

Similar content being viewed by others

References

  1. Takei K, Haucke V (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11:385–391

  2. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  Google Scholar 

  3. Schroeder TE (1979) Surface area change at fertilization: resorption of the mosaic membrane. Dev Bio 70:306–326

    Article  CAS  Google Scholar 

  4. Austin CR (1975) Membrane fusion events in fertilization. J Reprod Fertil 44:155–166

    Article  CAS  Google Scholar 

  5. Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276:1571–1574

  6. Daum B et al (2014) Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids. Proc Natl Acad Sci USA 111:3829–3834

  7. Delpeut S, Noyce RS, Richardson CD (2014) The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread. Virology 454–455:109–117

    Article  Google Scholar 

  8. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  Google Scholar 

  9. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596

    Article  CAS  Google Scholar 

  10. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526

    Article  CAS  Google Scholar 

  11. De Kruyff B, van Dijck PWM, Goldbach RW, Demel RA, van Deenen LLM (1973) Influence of fatty acid and sterol composition on the lipid phase transition and activity of membrane-bound enzymes in Acholeplasma laidlawii. BBA Biomembranes 330:269–282

  12. Chen J et al (2012) Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC. Drug Dev Ind Pharm 39:197–204

    Article  Google Scholar 

  13. Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. BBA Gen Subjects 1724:270–280

  14. Kinosita K Jr et al (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015–1019

  15. Chu G, Hayakawa H, Berg P (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res 15:1311–1326

    Article  CAS  Google Scholar 

  16. Ho M-C, Casciola M, Levine ZA, Vernier PT (2013) Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. J Phys Chem B 117:11633–11640

    Article  CAS  Google Scholar 

  17. Boonnoy P, Jarerattanachat V, Karttunen M et al (2015) Bilayer deformation, pores, and micellation induced by oxidized lipids. J Phy Chem Lett 6:4884–4888

    Article  CAS  Google Scholar 

  18. Schmidt K et al (2010) Electric field induced gyroid-to-cylinder transitions in concentrated diblock copolymer solutions. Macromolecules 43:4268–4274

    Article  CAS  Google Scholar 

  19. Mills TT et al (2008) Order parameters and areas in fluid-phase oriented lipid membranes using wide angle X-ray scattering. Biophys J 95:669–681

  20. Young SK, Trevino SF, Beck Tan NC (2002) Small-angle neutron scattering investigation of structural changes in nafion membranes induced by swelling with various solvents. J Polym Sci Poly Phys 40:387–400

    Article  CAS  Google Scholar 

  21. Napotnik T et al (2010) Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Med Biol Eng Comput 48:407–413

    Article  Google Scholar 

  22. Breton M, Delemotte L, Silve A, Mir LM, Tarek M (2012) Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J Am Chem Soc 134:13938–13941

    Article  CAS  Google Scholar 

  23. Needham D, Hochmuth RM (1989) Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J 55:1001–1009

  24. Fernández ML, Reigada R (2014) Effects of dimethyl sulfoxide on lipid membrane electroporation. J Phys Chem B 118:9306–9312

    Article  Google Scholar 

  25. Troiano GC, Stebe KJ, Raphael RM, Tung L (1999) The effects of gramicidin on electroporation of lipid bilayers. Biophys J 76:3150–3157

    Article  CAS  Google Scholar 

  26. Sun S, Wong JTY, Zhang T-Y (2011) Molecular dynamics simulations of phase transition of lamellar lipid membrane in water under an electric field. Soft Matter 7:147–152

    Article  CAS  Google Scholar 

  27. Marrink S-J, Peter Tieleman D (2002) Molecular dynamics simulation of spontaneous membrane fusion during a cubic-hexagonal phase transition. Biophys J 83: 2386–2392

  28. Fernández ML, Marshall G, Sagués F, Reigada R (2010) Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J Phys Chem B 114:6855–6865

    Article  Google Scholar 

  29. Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M (2014) A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100:11–17

    Article  CAS  Google Scholar 

  30. Zhang J, Sun T, Liang L, Wu T, Wang Q (2014) Drug promiscuity of P-glycoprotein and its mechanism of interaction with paclitaxel and doxorubicin. Soft Matter 10:438–445

    Article  CAS  Google Scholar 

  31. Sun T-Y, Liang L-J, Wang Q, Laaksonen A, Wu T (2014) A molecular dynamics study on pH response of protein adsorbed on peptide-modified polyvinyl alcohol hydrogel. Biomater Sci 2:419–426

    Article  CAS  Google Scholar 

  32. MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  33. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  34. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  35. Li X, Zhu L, Duan S, Zhao Y, Agren H (2014) Aggregation-induced chiral symmetry breaking of a naphthalimide-cyanostilbene dyad. Phys Chem Chem Phys 16:23854–23860

    Article  CAS  Google Scholar 

  36. Wilson MR (1996) Determination of order parameters in realistic atom-based models of liquid crystal systems. J Mol Liq 68:23–31

    Article  CAS  Google Scholar 

  37. Jähnig F (1979) Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci USA 76:6361–6365

  38. Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC (2006) Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E 74:021904

  39. Böckmann RA, Hac A, Heimburg T, Grubmüller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655

    Article  Google Scholar 

  40. Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793

    Article  CAS  Google Scholar 

  41. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  42. Cukjati D, Batiuskaite D, André F, Miklavčič D, Mir LM (2007) Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 70:501–507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 21674032, 21503186, 21403049, 81502794, 61602142), Zhejiang Provincial Natural Science Foundation of China (grant nos. LY13F040006, LY14B030008 and LY15E030009), and the Qianjiang Talents Program of Zhejiang Provice (nos. QJD1602011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Liang or Jia-Wei Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Z., Wang, H., Liang, L. et al. Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation. J Mol Model 23, 113 (2017). https://doi.org/10.1007/s00894-017-3292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3292-1

Keywords

Navigation