Log in

Quantum chemistry studies of the catalysis mechanism differences between the two isoforms of glutamic acid decarboxylase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The production of gamma-aminobutyric acid (GABA) is catalyzed by two isoforms of glutamic acid decarboxylase (GAD), using pyridoxal 5′-phosphate (PLP) as the cofactor. Between the two enzymes, GAD67 accounts for normal GABA requirement, while GAD65 stays inactive until emergent demand for GABA. Recent crystal structure findings revealed that the distinct conformation of a common catalytic loop of the enzymes may account for their different functions (Fenalti et al Nat Struct Mol Biol, 14:280-286, 2007). Enlightened by their inferences, we studied the underlying reaction mechanism of the two GAD isoforms using density functional theory (DFT). A rather complete reaction pathway is identified, including nine transition state (TS) structures and 14 intermediate (IM) structures. The rate limiting step occurs early during the reaction and involves a proton transfer. In the late stage, there are two pathways that involve C4’ and Cα protonation by Tyr or Lys. Our calculations show that the reaction barriers corroborate the conjecture made by Fenalti et al.

The production of gamma-aminobutyric acid (GABA) is catalyzed by two isoforms of glutamic acid decarboxylase (GAD), using pyridoxal 5′-phosphate (PLP) as the cofactor. Between the two enzymes, GAD67 accounts for normal GABA requirement, while GAD65 stays inactive until emergent demand for GABA. Recent crystal structure findings revealed that the distinct conformation of a common catalytic loop of the enzymes may account for their different functions. In this paper, we studied the underlying reaction mechanism of the two GAD isoforms using density functional theory (DFT), aiming to provide more quantitative support. A rather complete reaction pathway with two branches in the late stage is identified for a fairly large reaction model, including nine transition state (TS) structures and 14 intermediate (IM) structures. The different transition barriers of two late reaction pathways may explain the distinct functions of the two GAD isoforms. The results not only corroborate the experimental conjectures, but also help to enrich our understanding of the working principles of the two GAD isoforms

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Metzler DE (2001) Biochemistry: the chemical reactions of living cells, 2nd ed, Vol 1. Academic, San Diego

  2. Zempleni J, Rucker RB, Suttie JW, McCormick DB (2007) Handbook of vitamins, 4th ed. CRC, New York

  3. Christen P, Mehta PK (2001) Chem Rec 1:436–447

    Article  CAS  Google Scholar 

  4. Dunathan HC (1966) Proc Natl Acad Sci USA 55:712–716

    Article  CAS  Google Scholar 

  5. Eliot AC, Kirsch JF (2004) Annu Rev Biochem 73:383–415

    Article  CAS  Google Scholar 

  6. Porter TG, Spink DC, Martin SB, Martin DL (1985) Biochem J 231:705–712

    CAS  Google Scholar 

  7. Battaglioli G, Liu H, Martin DL (2003) J Neurochem 86:879–887

    Article  CAS  Google Scholar 

  8. Fenalti G, Law RHP, Buckle AM, Langendorf C, Tuck K, Rosado CJ, Faux NG, Mahmood K, Hampe CS, Banga JP, Wilce M, Schmidberger J, Rossjohn J, El-Kabbani O, Pike RN, Smith AI, Mackay IR, Rowley MJ, Whisstock JC (2007) Nat Struct Mol Biol 14:280–286

    Article  CAS  Google Scholar 

  9. Benkovic SJ, Hammes-Schiffer S (2003) Science 301:1196–1202

    Article  CAS  Google Scholar 

  10. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2011) Science 303:186–195

    Article  Google Scholar 

  11. Schramm VL (2005) Arch Biochem Biophys 433:13–26

    Article  CAS  Google Scholar 

  12. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  13. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  14. Himo F (2005) Theor Chem Acc 116:232–240

    Article  Google Scholar 

  15. Siegbahn PEM, Himo F (2011) Wiley Interdiscip Rev Comput Mol Sci 1:323–336

    Article  CAS  Google Scholar 

  16. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  17. Field MJ, Bash PA, Karplus MJ (1990) J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  18. Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian03. Gaussian Inc, Wallingford

    Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Song G, Su Y, Periana RA, Crabtree RH, Han K, Zhang H, Li X (2010) Angew Chem Int Ed 49:912–917

    Article  CAS  Google Scholar 

  23. Yang X, Hall MB (2010) J Am Chem Soc 132:120–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the support from National Natural Science Foundation of China (Grant No. 21073108), Ministry of Education of China (Grant No. 20090131120020) and Independent Innovation Foundation of Shandong University (Grant No. 2012TS006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiqing Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 5855 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Zhu, R., Sun, H. et al. Quantum chemistry studies of the catalysis mechanism differences between the two isoforms of glutamic acid decarboxylase. J Mol Model 19, 705–714 (2013). https://doi.org/10.1007/s00894-012-1594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1594-x

Keywords

Navigation