Log in

Half-metallicity of graphene nanoribbons and related systems: a new quantum mechanical El Dorado for nanotechnologies … or a hype for materials scientists?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work we discuss in some computational and analytical details the issue of half-metallicity in zig-zag graphene nanoribbons and nanoislands of finite width, i.e. the coexistence of metallic nature for electrons with one spin orientation and insulating nature for the electrons of opposite spin, which has been recently predicted from so-called first-principle calculations employing Density Functional Theory. It is mathematically demonstrated and computationally verified that, within the framework of non-relativistic and time-independent quantum mechanics, like the size-extensive spin-contamination to which it relates, half-metallicity is nothing else than a methodological artefact, due to a too approximate treatment of electron correlation in the electronic ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  2. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Science 312:1191–1196

    Article  CAS  Google Scholar 

  3. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Nature (London) 438:201–204

    Article  CAS  Google Scholar 

  4. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Science 315:1379–1379

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197–200

    Article  CAS  Google Scholar 

  6. Bolotin KI, Ghahari F, Shulman MD, Stormer HL, Kim P (2009) Nature 462:196–199

    Article  CAS  Google Scholar 

  7. Du X, Skachko I, Duerr F, Luican A, Andrei EY (2009) Nature 462:192–195

    Article  CAS  Google Scholar 

  8. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Nature Photonics 4:611–622

    Article  CAS  Google Scholar 

  9. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Phys Rev Lett 98:206805

    Article  CAS  Google Scholar 

  10. Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487–1491

    Article  CAS  Google Scholar 

  11. Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) J Phys Soc Jpn 65:1920–1923

    Article  CAS  Google Scholar 

  12. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Phys Rev B 54:17954–17961

    Article  CAS  Google Scholar 

  13. Wakabayashi K, Fujita M, Ajiki H, Sigrist M (1999) Phys Rev B 59:8271–8282

    Article  CAS  Google Scholar 

  14. Miyamoto Y, Nakada K, Fujita M (1999) Phys Rev B 59:9858–9861

    Article  CAS  Google Scholar 

  15. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  16. Dreizler RM, Gross EKU (1990) Density functional theory. Springer-Verlag, Berlin

    Book  Google Scholar 

  17. Koch W, Holthausen M (2001) A chemist’s guide to density functional theory, 2nd. Wiley-VCH, Weinheim

    Book  Google Scholar 

  18. Kobayashi Y, Fukui K-I, Enoki T, Kusakabe K, Kaburagi Y (2005) Phys Rev B 71:193406

    Article  CAS  Google Scholar 

  19. Enoki T, Kobayashi Y (2005) J Mat Chem 15:3999–4002

    Article  CAS  Google Scholar 

  20. Niimi Y, Matsui T, Kambara H, Tagami K, Tsukada M, Fukuyama H (2006) Phys Rev B 73:085421

    Article  CAS  Google Scholar 

  21. Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347–349

    Article  CAS  Google Scholar 

  22. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  23. Lieb EH (1989) Phys Rev Lett 62:1201–1204

    Article  Google Scholar 

  24. Okada S, Oshiyama A (2001) Phys Rev Lett 87:146803

    Article  CAS  Google Scholar 

  25. Lee H, Son Y-W, Park N, Han S, Yu J (2005) Phys Rev B 72:174431

    Article  CAS  Google Scholar 

  26. Fernandez-Rossier J, Palacios JJ (2007) Phys Rev Lett 99:177204

    Article  CAS  Google Scholar 

  27. Yazyev OV (2010) Rep Phys Rep 73:056501

    Article  CAS  Google Scholar 

  28. Jiang D, Sumpter BG, Dai S (2007) J Chem Phys 127:124703

    Article  CAS  Google Scholar 

  29. Rudberg E, Salek P, Luo Y (2007) Nano Lett 7:2211–2213

    Article  CAS  Google Scholar 

  30. Silvestorv PG, Efetov KB (2007) Phys Rev Lett 98:016802

    Article  CAS  Google Scholar 

  31. Shemella P, Zhang Y, Mailman M, Ajaya PM, Nayak SK (2007) Appl Phys Lett 912:042101

    Article  CAS  Google Scholar 

  32. Hod O, Barone V, Scuseria GE (2008) Phys Rev B 77:035411

    Article  CAS  Google Scholar 

  33. Hod O, Barone V, Peralta JE, Scuseria GE (2007) Nano Lett 7:2295–2299

    Article  CAS  Google Scholar 

  34. Dutta S, Manna AK, Pati SK (2009) Phys Rev Lett 102:096601

    Article  CAS  Google Scholar 

  35. Dutta S, Pati SK (2010) Carbon 48:4409–4413

    Article  CAS  Google Scholar 

  36. Mañanes A, Duque F, Ayuela A, López MJ, Alonso JA (2008) Phys Rev B 78:035432

    Article  CAS  Google Scholar 

  37. Huang B, Si C, Lee H, Zhao L, Wu JA, Gu BL, Duan WH (2010) Appl Phys Lett 97:043115

    Article  CAS  Google Scholar 

  38. Tang S, Cao Z (2011) Comput Mater Sci 50:1917–1924

    Article  CAS  Google Scholar 

  39. Huang B, Son Z-W, Kim G, Duan W, Ihm J (2009) J Am Chem Soc 131:17919–17925

    Article  CAS  Google Scholar 

  40. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488–1495

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1396

    Article  CAS  Google Scholar 

  43. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207–8215

    Article  CAS  Google Scholar 

  44. Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219906

    Article  CAS  Google Scholar 

  45. Izmaylov AF, Scuseria GE, Frisch MJ (2006) J Chem Phys 125:104103

    Article  CAS  Google Scholar 

  46. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416–7417

    Article  CAS  Google Scholar 

  47. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:10493–10493

    Article  CAS  Google Scholar 

  48. Hachmann J, Dorando JJ, Avilés M, Chan GK-L (2007) J Chem Phys 127:134309

    Article  CAS  Google Scholar 

  49. Qu Z, Zhang D, Liu C, Jiang Y (2009) J Phys Chem A 113:7909–7914

    Article  CAS  Google Scholar 

  50. dos Santos MC (2006) Phys Rev B 74:045426

    Article  CAS  Google Scholar 

  51. Jiang D-E, Dai S (2008) J Phys Chem A 112:332–335

    Article  CAS  Google Scholar 

  52. Jiang D-E, Dai S (2008) Chem Phys Lett 466:72–75

    Article  CAS  Google Scholar 

  53. Ishida T, Aihara J (2009) Phys Chem Chem Phys 11:7197–7201

    Article  CAS  Google Scholar 

  54. Jiang D-E, Chen XQ, Luo W, Shelton WA (2009) Chem Phys Lett 483:120–123

    Article  CAS  Google Scholar 

  55. Chen Z, Jiang D-E, Lu X, Bettinger HF, Dai S, Schleyer PvR, Houk KN (2007) Organic Lett 9:5449–5452

    Article  CAS  Google Scholar 

  56. Nesbet RK (1961) Rev Mod Phys 33:28–36

    Article  CAS  Google Scholar 

  57. Löwdin P-O (1963) Rev Mod Phys 35:496–501

    Article  Google Scholar 

  58. Davidson ER, Borden WT (1983) J Phys Chem 87:4783–4790

    Article  CAS  Google Scholar 

  59. Jenssen F (1999) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  60. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley & Sons, Chichester

    Google Scholar 

  61. Levine IR (1999) Quantum Chemistry. 5th ed. Prentice Hall

  62. Manne R (1972) Mol Phys 24:935

    Article  CAS  Google Scholar 

  63. Szabo AS, Ostlund NS (1989) Modern quantum chemistry. Mc Graw-Hill, New York

    Google Scholar 

  64. Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C, Fabian J (2009) Phys Rev B 80:235431

    Article  CAS  Google Scholar 

  65. André JM, Ladik J (1975) Electronic structure of polymers and molecular crystals. Plenum, New York

    Book  Google Scholar 

  66. André JM, Delhalle J, Ladik J (1975) Quantum theory of polymers. Reidel, New York

    Google Scholar 

  67. Ladik J (1980) Adv Quantum Chem 12:65

    Article  Google Scholar 

  68. Kertesz M (1982) Adv Quantum Chem 15:161–214

    Article  CAS  Google Scholar 

  69. Ladik J, André JM (1984) Quantum chemistry of polymers: solid state aspects. Reidel, Dordrecht

    Book  Google Scholar 

  70. Ladik J (1988) Quantum theory of polymers as solids. Plenum, New York

    Google Scholar 

  71. André JM, Delhalle J, Brédas JL (1991) Quantum chemistry aided design of organic polymers. World Scientific, London

    Google Scholar 

  72. Fripiat JG, Delhalle J, Harris FE (2007) In: Simos TE, Maroulis G (eds) Computation in Modern Science and Engineering. American Institute of Physics, Melville, NY, Vol. 2, Pt. A, pp 179-182

  73. Born M, Karman T (1912) Phys Z 13:297–309

    CAS  Google Scholar 

  74. Bloch F (1928) Z Phys 52:555–600

    CAS  Google Scholar 

  75. Löwdin PO (1956) Adv Phys 5:1

    Article  Google Scholar 

  76. Calais JL, Pickup BT, Deleuze MS, Delhalle J (1995) Eur J Phys 16:179–186

    Article  CAS  Google Scholar 

  77. Bube RH (1974) Electronic properties of crystalline solids-an introduction to fundamentals. Academic, New York

    Google Scholar 

  78. Monkhorst HJ, Kertesz K (1981) Phys Rev B 24:3015–3024

    Article  CAS  Google Scholar 

  79. Delhalle J, Calais JL (1986) J Chem Phys 85:5286–5298

    Article  CAS  Google Scholar 

  80. Deleuze MS, Delhalle J, Pickup BT, Calais J-L (1992) Phys Rev B 46:15668–15682

    Article  CAS  Google Scholar 

  81. Deleuze MS, Delhalle J, Pickup BT, Calais J-L (1995) Adv Quantum Chem 26:35–98

    Article  CAS  Google Scholar 

  82. Deleuze MS, Scheller MK, Cederbaum LS (1995) J Chem Phys 103:3578–3588

    Article  CAS  Google Scholar 

  83. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark, M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. GaussianInc, Wallingford CT

  84. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  85. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  86. Lowe JP, Peterson KA (2005) Quantum chemistry. Elsevier, Amsterdam

    Google Scholar 

  87. Atkins PW, Friedmann RS (2005) Molecular Quantum Mechanics. Oxford University Press

  88. Schatz GC, Ratner MA (2002) Quantum Mechanics in Chemistry. (Dover Publications, Mineola, New York, or any text book on group theory)

  89. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811–4815

    Article  CAS  Google Scholar 

  90. Lynch BJ, Truhlar DG (2001) J Phys Chem A 105:2936–2941

    Article  CAS  Google Scholar 

  91. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397–3406

    Article  CAS  Google Scholar 

  92. Adamo C, Barone V (1998) J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  93. Jameson CJ, Fowler PW (1986) J Chem Phys 85:3432–3436

    Article  CAS  Google Scholar 

  94. Jasien PG, Fitzgerald G (1990) J Chem Phys 93:2554–2560

    Article  CAS  Google Scholar 

  95. Sim F, Salahub DR (1992) Int J Quantum Chem 43:463–479

    Article  CAS  Google Scholar 

  96. Guan JG, Duffy P, Carter JT, Chong DP, Casida KC, Casida ME, Wrinn M (1993) J Chem Phys 98:4753–4765

    Article  CAS  Google Scholar 

  97. Dixon DA, Matsuzawa N (1994) J Phys Chem 98:3967–3977

    Article  CAS  Google Scholar 

  98. Matsuzawa N, Dixon DA (1994) J Phys Chem 98:2545–2554

    Article  CAS  Google Scholar 

  99. Guan JG, Casida ME, Köster AM, Salahub DR (1995) Phys Rev B 52:2184–2200

    Article  CAS  Google Scholar 

  100. McDowell SAC, Amos RD, Handy NC (1995) Chem Phys Lett 235:1–4

    Article  CAS  Google Scholar 

  101. Matsuzawa N, Ata M, Dixon DA (1995) J Phys Chem 99:7698–7706

    Article  CAS  Google Scholar 

  102. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  103. Feller D (1992) J Chem Phys 96:6104–6114

    Article  CAS  Google Scholar 

  104. Feller D (1993) J Chem Phys 98:7059–7071

    Article  CAS  Google Scholar 

  105. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  106. Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91–100

    Article  CAS  Google Scholar 

  107. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  108. Trucks GW, Watts JD, Salter EA, Bartlett RJ (1988) Chem Phys Lett 153:490–495

    Article  CAS  Google Scholar 

  109. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  110. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  111. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513–522

    Article  CAS  Google Scholar 

  112. Stanton JF (1997) Chem Phys Lett 281:130–134

    Article  CAS  Google Scholar 

  113. Hajgato B, Huzak M, Deleuze MS (2011) J Phys Chem A 115:9282–9293

    Article  CAS  Google Scholar 

  114. Jaffé HH, Orchin M (1965) Symmetry in chemistry. John Wiley & Sons, New York

    Google Scholar 

  115. Cederbaum LS, Tarantelli F, Winkler P (1990) J Phys B 23:L747–L752

    Article  CAS  Google Scholar 

  116. Cederbaum LS, Winkler P (1994) Theor Chim Acta 88:257–270

    Article  CAS  Google Scholar 

  117. Huzak M, Deleuze MS, Hajgató B (2011) J Chem Phys 135:104704

    Article  CAS  Google Scholar 

  118. Knight LB Jr, Bell BA, Cobranchi DP, Davidson ER (1999) J Chem Phys 111:3145–3154

    Article  CAS  Google Scholar 

  119. Knight LB Jr, Rice WE, Moore L, Davidson ER, Dailey RS (1998) J Chem Phys 109:1409–1424

    Article  CAS  Google Scholar 

  120. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281–289

    Article  CAS  Google Scholar 

  121. Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem Suppl Y-10:1

    Google Scholar 

  122. Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382–7387

    Article  CAS  Google Scholar 

  123. Bartlett RJ (1989) J Phys Chem 93:1697–1708

    Article  CAS  Google Scholar 

  124. Grimme S (2006) J Chem Phys 124:034108

    Article  CAS  Google Scholar 

  125. Pople JA, Gill PMW, Handy NC (1995) Spin-contamination is not well-defined in DFT methods. Int J Quantum Chem 56:303–305, except if the real interacting function is a spin singlet (S=0). For singlet states, therefore, charge- and spin-densities must exhibit the full symmetry of the molecular point group (Perdew JP, Ruzinsky A, Constantin LA, Sin J, Csonka GI (2009) J Chem Theor Comput 5:902-908)

    Article  CAS  Google Scholar 

  126. Yang L, Park CH, Son YW, Cohen ML, Louie SG (2007) Phys Rev Lett 99:186801

    Article  CAS  Google Scholar 

  127. Perumal S, Minaev B, Ågren H (2012) J Chem Phys 136:104702

    Article  CAS  Google Scholar 

  128. Yazyev OV, Helm L (2007) Phys Rev B 75:125408

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Most calculations presented in this work have been performed on a Compaq ES47 work station at Hasselt University, Belgium. For this work we also used the infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules foundation and the Flemish Government department EWI. This work has been supported by the FWO-Vlaanderen, the Flemish branch of the Belgian National Science Foundation, and by the BijzonderOnderzoeksFonds (BOF: special research fund) at Hasselt University. M. S. D and B. H. especially acknowledge financial support from a Research Program of the Research Foundation - Flanders (FWO_Vlaanderen; project number G.0350.09 N, entitled “From orbital imaging to quantum similarity in momentum space”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Deleuze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deleuze, M.S., Huzak, M. & Hajgató, B. Half-metallicity of graphene nanoribbons and related systems: a new quantum mechanical El Dorado for nanotechnologies … or a hype for materials scientists?. J Mol Model 19, 2699–2714 (2013). https://doi.org/10.1007/s00894-012-1517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1517-x

Keywords

Navigation