Log in

The zinc complex catalyzed hydration of alkyl isothiocyanates

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Based upon our preceding studies of the hydration of CO2, COS and CS2, accelerated by the carbonic anhydrase (CA) using simplified [ZnL3OH]+ complexes as model catalysts, we calculated the hydration mechanisms of both the uncatalyzed and the [ZnL3OH]+-catalyzed reactions (L = NH3) of isothiocyanates RNCS on the B3LYP/6-311+G(d,p) level of theory. Interestingly, the transition state for the favored metal mediated reaction with the lowest Gibbs free energy is only slightly higher than in the case of CO2 (depending on the attacking atom (N or S). Calculations under inclusion of solvent corrections show a reduction of the selectivity and a slight decrease of the Gibbs free energy in the rate-determining steps. The most plausible pathway prefers the mechanism via a Lindskog proton-shift transition state leading to the thermodynamically most stable product, the carbamatic-S-acid. Furthermore, powerful electron withdrawing substituents R of the cumulenic substrates influence the selectivity of the reaction to a significant extent. Especially the CF3-group in trifluoromethylisothiocyanate reverses the selectivity. This investigation demonstrates that reaction principles developed by nature can be translated to develop efficient catalytic methods, in this case presumably for the transformation of a wide variety of heterocumulenes aside from CO2, COS and CS2.

Competing transition structures for the [ZnL3OH]+-mediated activation of isothiocyanates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thoms S (2002) J Theor Biol 215:399–404. doi:10.1006/jtbi.2002.2528

    Article  CAS  Google Scholar 

  2. Bertini I, Luchinat C (1983) Acc Chem Res 16:272–279. doi:10.1021/ar00092a002

    Article  CAS  Google Scholar 

  3. Silverman DN, Lindskog S (1988) Acc Chem Res 21:30–36. doi:10.1021/ar00145a005

    Article  CAS  Google Scholar 

  4. Christianson DW, Fierke CA (1996) Acc Chem Res 29:331–339. doi:10.1021/ar9501232

    Article  CAS  Google Scholar 

  5. Lipscomb WN, Norbert S (1996) Chem Rev 96:2375–2433. doi:10.1021/cr950042j

    Article  CAS  Google Scholar 

  6. Maren TH (1967) Physiol Rev 47:595–781

    CAS  Google Scholar 

  7. Tashian RE (1989) Bioessays 10:186–192. doi:10.1002/bies.950100603

    Article  CAS  Google Scholar 

  8. Khalifah RG (1971) J Biol Chem 246:2561–2573

    CAS  Google Scholar 

  9. Heck RW, Boriack-Sjodin AP, Qian M, Tu C, Christianson WD, Laipis JP, Silverman ND (1996) Biochemistry 35:11605–11611. doi:10.1021/bi9608018

    Article  CAS  Google Scholar 

  10. Hartmann M, Clark T, van Eldik R (1996) J Mol Model 2:358–361. doi:10.1007/s0089460020358

    Article  CAS  Google Scholar 

  11. Hartmann M, Merz JKM, van Eldik R, Clark T (1998) J Mol Model 4:355–365. doi:10.1007/s008940050094

    Article  Google Scholar 

  12. Merz JKM, Hoffmann R, Dewar MJS (1989) J Am Chem Soc 111:5636–5649. doi:10.1021/ja00197a021

    Article  CAS  Google Scholar 

  13. Muguruma C (1999) THEOCHEM 461–462:439–452. doi:10.1016/S0166-1280(98)00455-2

    Article  Google Scholar 

  14. Schenk S, Kesselmeier J, Anders E (2004) Chem Eur J 10:3091–3105. doi:10.1002/chem.200305754

    Article  CAS  Google Scholar 

  15. Notni J, Schenk S, Protschill-Krebs G, Kesselmeier J, Anders E (2007) ChemBioChem 8:530–536. doi:10.1002/cbic.200600436

    Article  CAS  Google Scholar 

  16. Notni J, Schenk S, Görls H, Breitzke H, Anders E (2008) Inorg Chem 47:1382–1390. doi:10.1021/ic701899u

    Article  CAS  Google Scholar 

  17. Mauksch M, Bräuer M, Weston J, Anders E (2001) ChemBioChem 2:190–198. doi:10.1002/1439-7633(20010302)2:3<190::AID-CBIC190>3.0.CO;2-7

    Article  CAS  Google Scholar 

  18. Schröder D, Schwarz H, Schenk S, Anders E (2003) Angew Chem Int Ed 42:5087–5090. doi:10.1002/anie.200351440

    Article  Google Scholar 

  19. Prince RH, Woolley PR (1973) Bioorg Chem 2:337–344. doi:10.1016/0045-2068(73)90034-5

    Article  CAS  Google Scholar 

  20. Tautermann CS, Loferer MJ, Voegele AF, Liedl KR (2003) J Phys Chem B 107:12013–12020. doi:10.1021/jp0353789

    Article  CAS  Google Scholar 

  21. Sola M, Lledos A, Duran M, Bertran J (1992) J Am Chem Soc 114:869–877. doi:10.1021/ja00029a010

    Article  CAS  Google Scholar 

  22. Pocker Y, Deits TL (1982) J Am Chem Soc 104:2424–2434. doi:10.1021/ja00373a016

    Article  CAS  Google Scholar 

  23. Nakata K, Shimomura N, Shiina N, Izumi M, Ichikawa K, Shiro M (2002) J Inorg Biochem 89:255–266. doi:10.1016/S0162-0134(01)00419-6

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785–789

    CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  26. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648. doi:10.1063/1.438980

    Article  CAS  Google Scholar 

  27. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654. doi:10.1063/1.438955

    Article  CAS  Google Scholar 

  28. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280. doi:10.1016/0009-2614(90)80029-D

    Article  CAS  Google Scholar 

  29. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506. doi:10.1016/0009-2614(88)85250-3

    Article  CAS  Google Scholar 

  30. David EW, Dunning TH Jr (1993) J Chem Phys 98:1358–1371. doi:10.1063/1.464634

    Article  Google Scholar 

  31. Rick AK, Dunning TH Jr, Robert JH (1992) J Chem Phys 96:6796–6806. doi:10.1063/1.462569

    Article  Google Scholar 

  32. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001. doi:10.1021/jp9716997

    Article  CAS  Google Scholar 

  33. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681. doi:10.1002/jcc.10189

    Article  CAS  Google Scholar 

  34. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805. doi:10.1039/p29930000799

    Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian03 revision D.01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  36. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0 Theroretical Chemistry Institute, University of Winsconsin, Madison

  37. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  38. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746. doi:10.1063/1.449486

    Article  CAS  Google Scholar 

  39. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073. doi:10.1063/1.445134

    Article  CAS  Google Scholar 

  40. Hagemann H (1983) Methoden d.r Organischen Chemie (Houben-Weyl): Kohlensaeure-Derivate. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  41. Walter W, Bode KD (1967) Angew 7:285–328. doi:10.1002/ange.19670790702

    Article  Google Scholar 

  42. Browne DW, Dyson GM (1931) J Chem Soc 3285–3308. doi:10.1039/jr9310003285

  43. Rao CNR, Venkataraghavan R (1962) Tetrahedron 18:531–537. doi:10.1016/S0040-4020(01)92703-6

    Article  CAS  Google Scholar 

  44. Harris JF (1960) J Am Chem Soc 82:155–158. doi:10.1021/ja01486a036

    Article  CAS  Google Scholar 

  45. Hadad CM, Rablen PR, Wiberg KB (1998) J Org Chem 63:8668–8681. doi:10.1021/jo972180+

    Article  CAS  Google Scholar 

  46. Nilsson Lill SO, Rauhut G, Anders E (2003) Chem Eur J 9:3143–3153. doi:10.1002/chem.200304878

    Article  Google Scholar 

  47. Bottoni A, Lanza CZ, Miscione GP, Spinelli D (2004) J Am Chem Soc 126:1542–1550. doi:10.1021/ja030336j

    Article  CAS  Google Scholar 

  48. Kimura E (2001) Acc Chem Res 34:171–179. doi:10.1021/ar000001w

    Article  CAS  Google Scholar 

  49. Mulliken RS (1955) J Chem Phys 23:1833–1840. doi:10.1063/1.1740588

    Article  CAS  Google Scholar 

  50. Fonseca Guerra C, Handgraaf J-W, Baerends EJ, Bickelhaupt FM (2004) J Comput Chem 25:189–210. doi:10.1002/jcc.10351

    Article  Google Scholar 

  51. Eriksson AE, Jones TA, Liljas A (1988) Prot Struct Funct Genet 4:274–282. doi:10.1002/prot.340040406

    Article  CAS  Google Scholar 

  52. Lindskog S, Engberg P, Forsman C, Ibrahim AS, Jonsson HB, Simonsson I, Tibell L (1987) Ann N Y Acad Sci 429:61–75. doi:10.1111/j.1749-6632.1984.tb12315.x

    Article  Google Scholar 

  53. Liang J-Y, Lipscomb WN (1987) Biochemistry 26:5293–5301. doi:10.1021/bi00391a012

    Article  CAS  Google Scholar 

  54. Miscione GP, Stenta M, Spinelli D, Anders E, Bottoni A (2007) Theor Chem Acc 118:193–201. doi:10.1007/s00214-007-0274-x

    Article  CAS  Google Scholar 

  55. Notni J, Günther W, Anders E (2007) Eur J Inorg Chem 7:985–993. doi:10.1002/ejic.200600962

    Article  Google Scholar 

  56. Notni J, Schenk S, Roth A, Plass W, Görls H, Uhlemann U, Walter A, Schmitt M, Popp J, Chatzipapadopoulos S, Emmler T, Breitzke H, Leppert J, Buntkowsky G, Kempe K, Anders E (2006) Eur J Inorg Chem 14:2783–2791. doi:10.1002/ejic.200500948

    Article  Google Scholar 

  57. Kimura E (1994) Prog Inorg Chem 41:443–491. doi:10.1002/9780470166420.ch6

    Article  CAS  Google Scholar 

  58. Kimura E, Koike T, Shionoya M (1997) Struct Bond 89:1–28

    CAS  Google Scholar 

  59. Kimura E, Shiota T, Koike T, Shiro M, Kodama M (1990) J Am Chem Soc 112:5805–5811. doi:10.1021/ja00171a020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (Collaborative Research Center 436, University of Jena, Germany), the Fonds der Chemischen Industrie (Germany), and the Thüringer Ministerium für Wissenschaft, Forschung und Kunst (Erfurt, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Anders.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 277 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eger, W.A., Jahn, B.O. & Anders, E. The zinc complex catalyzed hydration of alkyl isothiocyanates. J Mol Model 15, 433–446 (2009). https://doi.org/10.1007/s00894-008-0385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0385-x

Keywords

Navigation