Log in

Expression of CILP-2 and DDR2 and ultrastructural changes in the articular cartilage of patients with knee osteoarthritis undergoing total knee arthroplasty: a pilot morphological study

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

The aim of the study was to correlate the immunohistochemical expression of cartilage intermediate layer protein 2 (CILP-2) and discoidin domain receptor 2 (DDR2), and the ultrastructural changes in the cartilage with the degree of articular cartilage damage in osteoarthritis (OA) patients. Cartilage samples were obtained from twenty patients aged from 46 to 68 years undergoing total knee arthroplasty. In each patient, medial and lateral tibial plateau samples were analysed applying OARSI histopathology grading. Positive correlation was noted between the extent of CILP-2 staining intensity and OARSI grades. Abundant staining for CILP-2 was found in the superficial and middle layers and in the pericellular matrix (PCM) of the deep zone. Transmission electron microscopy studies demonstrated strong damage of chondrocytes, the organelles were often diminished or focally aggregated. As a characteristic finding, PCM was frequently expanded, which may reflect a pathogenic step in OA progression. In conclusion, CILP-2 may potentially be a relevant marker of OA progression as its expression correlated better with cartilage damage than the known marker of articular cartilage damage, DDR2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fox AJS, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468. https://doi.org/10.1177/1941738109350438

    Article  Google Scholar 

  2. Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’Keefe RJ (2003) Articular cartilage biology. J Am Acad Orthop Surg 11(6):421–430. https://doi.org/10.5435/00124635-200311000-00006

    Article  PubMed  Google Scholar 

  3. Peng Z, Sun H, Bunpetch V, Koh Y, Wen Y, Wu D, Ouyang H (2021) The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 268:120555. https://doi.org/10.1016/j.biomaterials.2020.120555

    Article  CAS  PubMed  Google Scholar 

  4. Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I (2018) Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 71–72:40–50. https://doi.org/10.1016/j.matbio.2018.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watt FE (2018) Osteoarthritis biomarkers: year in review. Osteoarthr Cartil 26:312–318. https://doi.org/10.1016/j.joca.2017.10.016

    Article  CAS  Google Scholar 

  6. Lorenzo P, Bayliss MT, Heinegård D (1998) A novel cartilage protein (CILP) present in the mid-zone of human articular cartilage increases with age. J Biol Chem 273(36):23463–23468. https://doi.org/10.1074/jbc.273.36.23463

    Article  CAS  PubMed  Google Scholar 

  7. Tsuruha J, Masuko-Hongo K, Kato T, Sakata M, Nakamura H, Nishioka K (2001) Implication of cartilage intermediate layer protein in cartilage destruction in subsets of patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 44(4):838–845. https://doi.org/10.1002/1529-0131(200104)44:4%3c838::AID-ANR140%3e3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  8. Hirose J, Ryan LM, Masuda I (2002) Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum 46(12):3218–3229. https://doi.org/10.1002/art.10632

    Article  CAS  PubMed  Google Scholar 

  9. Lorenzo P, Bayliss MT, Heinegård D (2004) Altered patterns and synthesis of extracellular matrix macromolecules in early osteoarthritis. Matrix Biol 23(6):381–391. https://doi.org/10.1016/j.matbio.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  10. Valdes AM, Hart DJ, Jones KA, Surdulescu G, Swarbrick P, Doyle DV, Schafer AJ, Spector TD (2004) Association study of candidate genes for the prevalence and progressioon of knee osteoarthritis. Arthr Rheum 50(8):2497–2507. https://doi.org/10.1002/art.20443

    Article  CAS  Google Scholar 

  11. Taipale M, Solovieva S, Leino-Arjas P, Männikkö M (2017) Functional polymorphisms in asporin and CILP together with joint loading predispose to hand osteoarthritis. BMC Genet 18(1):108. https://doi.org/10.1186/s12863-017-0585-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seki S, Kawaguchi Y, Chiba K, Mikami Y, Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, Tsunoda T, Kamata M, Kubo T, Toyama Y, Kimura T, Nakamura Y, Ikegawa S (2005) A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37(6):607–612. https://doi.org/10.1038/ng1557

    Article  CAS  PubMed  Google Scholar 

  13. Min SK, Nakazato K, Okada T, Ochi E, Hiranuma K (2009) The cartilage intermediate layer protein gene is associated with lumbar disc degeneration in collegiate judokas. Int J Sports Med 30(9):691–694. https://doi.org/10.1055/s-0029-1214380

    Article  CAS  PubMed  Google Scholar 

  14. Wang W, Hao J, Zheng S, **ao X, Wen Y, He A, Guo X, Zhang F (2016) Association between cartilage intermediate layer protein and degeneration of intervertebral disc: a meta-analysis. Spine (Phila Pa 1976) 41(20):E1244–E1248. https://doi.org/10.1097/BRS.0000000000001749

    Article  PubMed  Google Scholar 

  15. Bernardo BC, Belluoccio D, Rowley L, Little CB, Hansen U, Bateman JF (2011) Cartilage intermediate layer protein 2 (CILP-2) is expressed in articular and meniscal cartilage and down-regulated in experimental osteoarthritis. J Biol Chem 286(43):37758–37767. https://doi.org/10.1074/jbc.M111.248039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson K, Farley D, Hu SI, Terkeltaub R (2003) One of two chondrocyte-expressed isoforms of cartilage intermediate-layer protein functions as an insulin-like growth factor 1 antagonist. Arthritis Rheum 48(5):1302–1314. https://doi.org/10.1002/art.10927

    Article  CAS  PubMed  Google Scholar 

  17. Hosseininia S, Önnerfjord P, Dahlberg LE (2019) Targeted proteomics of hip articular cartilage in OA and fracture patients. J Orthop Res 37(1):131–135. https://doi.org/10.1002/jor.24158

    Article  CAS  PubMed  Google Scholar 

  18. Boeth H, Raffalt PC, MacMahon A, Poole AR, Eckstein F, Wirth W, Buttgereit F, Önnerfjord P, Lorenzo P, Klint C, Pramhed A, Duda GN (2019) Association between changes in molecular biomarkers of cartilage matrix turnover and changes in knee articular cartilage: a longitudinal pilot study. J Exp Orthop 6(1):19. https://doi.org/10.1186/s40634-019-0179-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sunk IG, Bobacz K, Hofstaetter JG, Amoyo L, Soleiman A, Smolen J, Xu L, Li Y (2007) Increased expression of discoidin domain receptor 2 is linked to the degree of cartilage damage in human knee joints: a potential role in osteoarthritis pathogenesis. Arthritis Rheum 56(11):3685–3692. https://doi.org/10.1002/art.22970

    Article  CAS  PubMed  Google Scholar 

  20. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil 14(1):13–29. https://doi.org/10.1016/j.joca.2005.07.014

    Article  CAS  Google Scholar 

  21. Meyerholz DK, Beck AP (2018) Principles and approaches for reproducible scoring of tissue stains in research. Lab Invest 98(7):844–855. https://doi.org/10.1038/s41374-018-0057-0

    Article  PubMed  Google Scholar 

  22. Perrot S (2015) Osteoarthritis pain. Best Pract Res Clin Rheumatol 29(1):90–97. https://doi.org/10.1016/j.berh.2015.04.017

    Article  PubMed  Google Scholar 

  23. Raju PK, Kini SG, Verma A (2012) Wear patterns of tibiofemoral articulation in osteoarthritic knees: analysis and review of literature. Arch Orthop Trauma Surg 132(9):1267–1271. https://doi.org/10.1007/s00402-012-1547-y

    Article  CAS  PubMed  Google Scholar 

  24. Nigoro K, Ito H, Kawata T, Ishie S, Morita Y, Nishitani K, Aoyama T, Tabara Y, Matsuda F, Narumiya S, Matsuda S (2021) Differential contribution of the medial and the lateral side of the joint to symptoms in knee osteoarthritis: a radiographic and laboratory analysis in the Nagahama study. Cartilage 13(1_suppl):1648S-1657S. https://doi.org/10.1177/19476035211025817

    Article  PubMed  PubMed Central  Google Scholar 

  25. **ao L, Liu C, Wang B, Fei W, Mu Y, Xu L, Li Y (2019) Targeting discoidin domain receptor 2 for the development of disease-modifying osteoarthritis drugs. Cartilage 13(2_suppl):1285S-1291S. https://doi.org/10.1177/1947603519852401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hsueh MF, Khabut A, Kjellström S, Önnerfjord P, Kraus VB (2016) Elucidating the molecular composition of cartilage by proteomics. J Proteome Res 15(2):374–388. https://doi.org/10.1021/acs.jproteome.5b00946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kouri JB, Lavalle C (2006) Do chondrocytes undergo “activation” and “transdifferentiation” during the pathogenesis of osteoarthritis? A review of the ultrastructural and immunohistochemical evidence. Histol Histopathol 21(7):793–802. https://doi.org/10.14670/HH-21.793

    Article  CAS  PubMed  Google Scholar 

  28. Rellmann Y, Eidhof E, Dreier R (2021) Review: ER stress-induced cell death in osteoarthritic cartilage. Cell Signal 78:109880. https://doi.org/10.1016/j.cellsig.2020.109880

    Article  CAS  PubMed  Google Scholar 

  29. Roach HI, Aigner T, Kouri JB (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 78:109880. https://doi.org/10.1016/j.cellsig.2020.109880

    Article  CAS  Google Scholar 

  30. Xu L, Li Y (2020) A molecular cascade underlying articular cartilage degeneration. Curr Drug Targets 21(9):838–848. https://doi.org/10.2174/1389450121666200214121323

    Article  CAS  PubMed  Google Scholar 

  31. Lee GM, Paul TA, Slabaugh M, Kelley SS (2000) The incidence of enlarged chondrons in normal and osteoarthritic human cartilage and their relative matrix density. Osteoarthr Cartil 8(1):44–52. https://doi.org/10.1053/joca.1999.0269

    Article  CAS  Google Scholar 

  32. Mori M, Nakajima M, Mikami Y, Seki S, Takigawa M, Kubo T, Ikegawa S (2006) Transcriptional regulation of the cartilage intermediate layer protein (CILP) gene. Biochem Biophys Res Commun 341(1):121–127. https://doi.org/10.1016/j.bbrc.2005.12.15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We give special thanks to Prof Aare Märtson, Head of Traumatology and Orthopaedics Clinic, for conducting the collection of biopsies, and orthopaedic surgeons Eiki Strauss, Anna-Helena Kase, Jaan Laos, Mart Parv, Sigrid Paul, Egon Puuorg, Alo Rull, and Viktor Šapovalov for collection of biopsies during the TKR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taavi Torga.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torga, T., Suutre, S., Kisand, K. et al. Expression of CILP-2 and DDR2 and ultrastructural changes in the articular cartilage of patients with knee osteoarthritis undergoing total knee arthroplasty: a pilot morphological study. Med Mol Morphol 56, 46–57 (2023). https://doi.org/10.1007/s00795-022-00339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-022-00339-4

Keywords

Navigation