Log in

Fracture resistance of simulated immature roots using Biodentine and fiber post compared with different canal-filling materials under aging conditions

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the fracture resistance of simulated immature roots using Biodentine (BD) and fiber post (FP) compared with different root canal-filling materials under aging conditions.

Materials and methods

One hundred and forty maxillary central anterior teeth were randomly divided into seven groups (n = 20/group). Negative control received no treatment. In the other groups, the root canals were prepared to simulate immature teeth. The root canals were filled with a 4-mm apical plug of BD and restored intraradicular with BD, BD + FP, composite resin (CR), CR + FP, and gutta-percha (GP). Positive controls were instrumented but without restoration. Teeth were subjected to thermocycling and received cyclic loading before fracture resistance test. Fracture resistance was conducted using a universal testing machine with a crosshead speed of 0.5 mm/min until fracture. Load to fracture was recorded in newtons (N). Data were statistically analyzed using one-way analysis of variance and Tukey’s test at P < 0.05.

Results

Root canals restored intraradicular with BD + FP and CR + FP showed the highest fracture resistance compared with the other experimental groups (P < 0.001). There was no significant difference in the fracture resistance between CR and BD groups (P = 0.998). GP and positive control groups were significantly lower resistance to fracture than the other groups (P < 0.001).

Conclusions

Intraradicular reinforcement with BD + FP and CR + FP enhanced the fracture resistance of simulated immature teeth than the other experimental groups.

Clinical relevance

Biodentine or composite resin combined with fiber post could be used to reinforce immature teeth with an apical Biodentine plug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Linsuwanont P, Kulvitit S, Santiwong B (2018) Reinforcement of simulated immature permanent teeth after mineral trioxide aggregate apexification. J Endod 44:163–167. https://doi.org/10.1016/j.joen.2017.08.031

    Article  PubMed  Google Scholar 

  2. Al-Jundi SH (2004) Type of treatment, prognosis, and estimation of time spent to manage dental trauma in late presentation cases at a dental teaching hospital: a longitudinal and retrospective study. Dent Traumatol 20:1–5. https://doi.org/10.1111/j.1600-4469.2004.00218.x

    Article  PubMed  Google Scholar 

  3. Belli S, Eraslan O, Eskitaşcıoğlu G (2018) Effect of different treatment options on biomechanics of immature teeth: a finite element stress analysis study. J Endod 44:475–479. https://doi.org/10.1016/j.joen.2017.08.037

    Article  PubMed  Google Scholar 

  4. Shabahang S (2013) Treatment options: apexogenesis and apexification. J Endod 39:S26–S29. https://doi.org/10.1016/j.joen.2012.11.046

    Article  PubMed  Google Scholar 

  5. Parirokh M, Torabinejad M (2010) Mineral trioxide aggregate: a comprehensive literature review--part III: clinical applications, drawbacks, and mechanism of action. J Endod 36:400–413. https://doi.org/10.1016/j.joen.2009.09.009

    Article  PubMed  Google Scholar 

  6. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR (1995) Physical and chemical properties of a new root-end filling material. J Endod 21:349–353. https://doi.org/10.1016/S0099-2399(06)80967-2

    Article  PubMed  Google Scholar 

  7. Eid AA, Komabayashi T, Watanabe E, Shiraishi T, Watanabe I (2012) Characterization of the mineral trioxide aggregate-resin modified glass ionomer cement interface in different setting conditions. J Endod 38:1126–1129. https://doi.org/10.1016/j.joen.2012.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vidal K, Martin G, Lozano O, Salas M, Trigueros J, Aguilar G (2016) Apical closure in apexification: a review and case report of apexification treatment of an immature permanent tooth with Biodentine. J Endod 42:730–734. https://doi.org/10.1016/j.joen.2016.02.007

    Article  PubMed  Google Scholar 

  9. Camilleri J, Sorrentino F, Damidot D (2013) Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA angelus. Dent Mater 29:580–593. https://doi.org/10.1016/j.dental.2013.03.007

    Article  PubMed  Google Scholar 

  10. Zanini M, Sautier JM, Berdal A, Simon S (2012) Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod 38:1220–1226. https://doi.org/10.1016/j.joen.2012.04.018

    Article  PubMed  Google Scholar 

  11. Pace R, Giuliani V, Pini Prato L, Baccetti T, Pagavino G (2007) Apical plug technique using mineral trioxide aggregate: results from a case series. Int Endod J 40:478–484. https://doi.org/10.1111/j.1365-2591.2007.01240.x

    Article  PubMed  Google Scholar 

  12. Simon S, Rilliard F, Berdal A, Machtou P (2007) The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. Int Endod J 40:186–197. https://doi.org/10.1111/j.1365-2591.2007.01214.x

    Article  PubMed  Google Scholar 

  13. Witherspoon DE, Small JC, Regan JD, Nunn M (2008) Retrospective analysis of open apex teeth obturated with mineral trioxide aggregate. J Endod 34:1171–1176. https://doi.org/10.1016/j.joen.2008.07.005

    Article  PubMed  Google Scholar 

  14. Silujjai J, Linsuwanont P (2017) Treatment outcomes of apexification or revascularization in nonvital immature permanent teeth: a retrospective study. J Endod 43:238–245. https://doi.org/10.1016/j.joen.2016.10.030

    Article  PubMed  Google Scholar 

  15. Jeeruphan T, Jantarat J, Yanpiset K, Suwannapan L, Khewsawai P, Hargreaves KM (2012) Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. J Endod 38:1330–1336. https://doi.org/10.1016/j.joen.2012.06.028

    Article  PubMed  Google Scholar 

  16. Desai S, Chandler N (2009) The restoration of permanent immature anterior teeth, root filled using MTA: a review. J Dent 37:652–657. https://doi.org/10.1016/j.jdent.2009.05.026

    Article  PubMed  Google Scholar 

  17. Schmoldt SJ, Kirkpatrick TC, Rutledge RE, Yaccino JM (2011) Reinforcement of simulated immature roots restored with composite resin, mineral trioxide aggregate, gutta-percha, or a fiber post after thermocycling. J Endod 37:1390–1393. https://doi.org/10.1016/j.joen.2011.07.001

    Article  PubMed  Google Scholar 

  18. Tanalp J, Dikbas I, Malkondu O, Ersev H, Güngör T, Bayirli G (2012) Comparison of the fracture resistance of simulated immature permanent teeth using various canal filling materials and fiber posts. Dent Traumatol 28:457–464. https://doi.org/10.1111/j.1600-9657.2011.01098.x

    Article  PubMed  Google Scholar 

  19. Bortoluzzi EA, Souza EM, Reis JM, Esberard RM, Tanomaru-Filho M (2007) Fracture strength of bovine incisors after intra-radicular treatment with MTA in an experimental immature tooth model. Int Endod J 40:684–691. https://doi.org/10.1111/j.1365-2591.2007.01266.x

    Article  PubMed  Google Scholar 

  20. Soares CJ, Soares PV, de Freitas Santos-Filho PC, Castro CG, Magalhaes D, Versluis A (2008) The influence of cavity design and glass fiber posts on biomechanical behavior of endodontically treated premolars. J Endod 34:1015–1019. https://doi.org/10.1016/j.joen.2008.05.017

    Article  PubMed  Google Scholar 

  21. Siso SH, Hürmüzlü F, Turgut M, Altundaşar E, Serper A, Er K (2007) Fracture resistance of the buccal cusps of root filled maxillary premolar teeth restored with various techniques. Int Endod J 40:161–168. https://doi.org/10.1111/j.1365-2591.2007.01192.x

    Article  PubMed  Google Scholar 

  22. Nayak G, Hasan MF (2014) Biodentine-a novel dentinal substitute for single visit apexification. Restor Dent Endod 39:120–125. https://doi.org/10.5395/rde.2014.39.2.120

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sinha N, Singh B, Patil S (2014) Cone beam-computed topographic evaluation of a central incisor with an open apex and a failed root canal treatment using one-step apexification with Biodentine: a case report. J Conserv Dent 17:285–289. https://doi.org/10.4103/0972-0707.131805

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bajwa NK, **garwar MM, Pathak A (2015) Single visit apexification procedure of a traumatically injured tooth with a novel bioinductive material (Biodentine). Int J Clin Pediatr Dent 8:58–61. https://doi.org/10.5005/jp-journals-10005-1284

    Article  PubMed  PubMed Central  Google Scholar 

  25. Elnaghy AM, Elsaka SE (2016) Fracture resistance of simulated immature teeth filled with Biodentine and white mineral trioxide aggregate - an in vitro study. Dent Traumatol 32:116–120. https://doi.org/10.1111/edt.12224

    Article  PubMed  Google Scholar 

  26. Hemalatha H, Sandeep M, Kulkarni S, Yakub SS (2009) Evaluation of fracture resistance in simulated immature teeth using resilon and ribbond as root reinforcements--an in vitro study. Dent Traumatol 25:433–438. https://doi.org/10.1111/j.1600-9657.2009.00804.x

    Article  PubMed  Google Scholar 

  27. Seto B, Chung KH, Johnson J, Paranjpe A (2013) Fracture resistance of simulated immature maxillary anterior teeth restored with fiber posts and composite to varying depths. Dent Traumatol 29:394–398. https://doi.org/10.1111/edt.12020

    Article  PubMed  Google Scholar 

  28. Cvek M (1992) Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol 8:45–55. https://doi.org/10.1111/j.1600-9657.1992.tb00228.x

    Article  PubMed  Google Scholar 

  29. Mori GG, Teixeira LM, de Oliveira DL, Jacomini LM, da Silva SR (2014) Biocompatibility evaluation of Biodentine in subcutaneous tissue of rats. J Endod 40:1485–1488. https://doi.org/10.1016/j.joen.2014.02.027

    Article  PubMed  Google Scholar 

  30. Tay FR, Pashley DH (2007) Monoblocks in root canals: a hypothetical or a tangible goal. J Endod 33:391–398. https://doi.org/10.1016/j.joen.2006.10.009

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ambica K, Mahendran K, Talwar S, Verma M, Padmini G, Periasamy R (2013) Comparative evaluation of fracture resistance under static and fatigue loading of endodontically treated teeth restored with carbon fiber posts, glass fiber posts, and an experimental dentin post system: an in vitro study. J Endod 39:96–100. https://doi.org/10.1016/j.joen.2012.07.003

    Article  PubMed  Google Scholar 

  32. Coltène Whaledent. ParaPost Fiber White Brochure. Available at: https://www.coltene.com/products/endodontics/posts/fiber/parapost-fiber/parapostR-fiber-white/. Accessed 10 Jan 2019

  33. Karapinar-Kazandag M, Basrani B, Tom-Kun Yamagishi V, Azarpazhooh A, Friedman S (2016) Fracture resistance of simulated immature tooth roots reinforced with MTA or restorative materials. Dent Traumatol 32:146–152. https://doi.org/10.1111/edt.12230

    Article  PubMed  Google Scholar 

  34. Pene JR, Nicholls JI, Harrington GW (2001) Evaluation of fiber-composite laminate in the restoration of immature, nonvital maxillary central incisors. J Endod 27:18–22. https://doi.org/10.1097/00004770-200101000-00006

    Article  PubMed  Google Scholar 

  35. Seghi RR, Nasrin S, Draney J, Katsube N (2013) Root fortification. J Endod 39:S57–S62. https://doi.org/10.1016/j.joen.2012.10.029

    Article  PubMed  Google Scholar 

  36. Cauwels RG, Lassila LV, Martens LC, Vallittu PK, Verbeeck RM (2014) Fracture resistance of endodontically restored, weakened incisors. Dent Traumatol 30:348–355. https://doi.org/10.1111/edt.12103

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Elnaghy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elnaghy, A., Elsaka, S. Fracture resistance of simulated immature roots using Biodentine and fiber post compared with different canal-filling materials under aging conditions. Clin Oral Invest 24, 1333–1338 (2020). https://doi.org/10.1007/s00784-019-03014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03014-8

Keywords

Navigation