Log in

Bias-correcting the realized range-based variance in the presence of market microstructure noise

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Market microstructure noise is a challenge to high-frequency based estimation of the integrated variance, because the noise accumulates with the sampling frequency. This has led to widespread use of constructing the realized variance, a sum of squared intraday returns, from sparsely sampled data, for example 5- or 15-minute returns. In this paper, we analyze the impact of microstructure noise on the realized range-based variance and propose a bias correction to the range-statistic. The new estimator is shown to be consistent for the integrated variance and asymptotically mixed Gaussian under simple forms of microstructure noise. We can select an optimal partition of the high-frequency data in order to minimize its asymptotic conditional variance. The finite sample properties of our estimator are studied with Monte Carlo simulations and we implement it using Microsoft high-frequency data from TAQ. We find that a bias-corrected range-statistic often leads to much smaller confidence intervals for the integrated variance, relative to the realized variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aït-Sahalia, Y.: Disentangling diffusion from jumps. J. Financ. Econ. 74, 487–528 (2004)

    Article  Google Scholar 

  2. Aït-Sahalia, Y., Mykland, P.A., Zhang, L.: How often to sample a continuous-time process in the presence of market microstructure noise. Rev. Financ. Stud. 18, 351–416 (2005)

    Article  Google Scholar 

  3. Aït-Sahalia, Y., Mykland, P.A., Zhang, L.: Ultra high frequency volatility estimation with dependent microstructure noise. Working paper, Princeton University (2006). Available at http://www.princeton.edu/~yacine/

  4. Aldous, D.J., Eagleson, G.K.: On mixing and stability of limit theorems. Ann. Probab. 6, 325–331 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alizadeh, S., Brandt, M.W., Diebold, F.X.: Range-based estimation of stochastic volatility models. J. Finance 57, 1047–1092 (2002)

    Article  Google Scholar 

  6. Andersen, T.G., Benzoni, L., Lund, J.: An empirical investigation of continuous-time equity return models. J. Finance 57, 1239–1284 (2002)

    Article  Google Scholar 

  7. Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: Great realizations. Risk 13, 105–108 (2000)

    Google Scholar 

  8. Back, K.: Asset prices for general processes. J. Math. Econ. 20, 371–395 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bandi, F.M., Russell, J.R.: Microstructure noise, realized variance, and optimal sampling. Rev. Econ. Stud. 75, 339–369 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Barndorff-Nielsen, O.E., Graversen, S.E., Jacod, J., Podolskij, M., Shephard, N.: A central limit theorem for realized power and bipower variations of continuous semimartingales. In: Kabanov, Y., Lipster, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift, pp. 33–68. Springer, Berlin (2006)

    Chapter  Google Scholar 

  11. Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N.: Designing realised kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica 76(6), 1481–1536 (2008)

    Article  MATH  Google Scholar 

  12. Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N.: Subsampling realised kernels. J. Econom. (2008, forthcoming). Available at http://www.nuffield.ox.ac.uk/users/shephard/

  13. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B 64, 253–280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics. Econometrica 72, 885–925 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Barndorff-Nielsen, O.E., Shephard, N.: Power and bipower variation with stochastic volatility and jumps. J. Financ. Econom. 2, 1–48 (2004)

    Article  Google Scholar 

  16. Barndorff-Nielsen, O.E., Shephard, N.: Econometrics of testing for jumps in financial economics using bipower variation. J. Financ. Econom. 4, 1–30 (2006)

    MathSciNet  Google Scholar 

  17. Brandt, M.W., Diebold, F.X.: A no-arbitrage approach to range-based estimation of return covariances and correlations. J. Bus. 79, 61–73 (2006)

    Article  Google Scholar 

  18. Christensen, K., Podolskij, M.: Range-based estimation of quadratic variation. Working paper, Aarhus School of Business (2006). Available at http://www.math.ethz.ch/~podolski/

  19. Christensen, K., Podolskij, M.: Realized range-based estimation of integrated variance. J. Econom. 141, 323–349 (2007)

    Article  MathSciNet  Google Scholar 

  20. Delattre, S., Jacod, J.: A central limit theorem for normalized functions of the increments of a diffusion process, in the presence of round-off errors. Bernoulli 3, 1–28 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Doornik, J.A.: Object-Oriented Matrix Programming Using Ox, 3 edn. Timberlake Consultants Press (2002)

  22. Fang, Y.: Volatility modeling and estimation of high-frequency data with Gaussian noise. PhD thesis, Sloan School of Management, MIT (1996). Unpublished

  23. Garman, M.B., Klass, M.J.: On the estimation of security price volatilities from historical data. J. Bus. 53, 67–78 (1980)

    Article  Google Scholar 

  24. Ghysels, E., Harvey, A.C., Renault, E.: Stochastic volatility. In: Maddala, G.S., Rao, C.R. (eds.) Handbook of Statistics, vol. 14, pp. 119–191. North-Holland, Amsterdam (1996)

    Google Scholar 

  25. Gloter, A., Jacod, J.: Diffusions with measurement errors, I: local asymptotic normality. ESAIM: Probab. Stat. 5, 225–242 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gloter, A., Jacod, J.: Diffusions with measurement errors, II: measurement errors. ESAIM: Probab. Stat. 5, 243–260 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Griffin, J.E., Oomen, R.C.A.: Covariance measurement in the presence of non-synchronous trading and market microstructure noise. Working paper, University of Warwick (2006). Available at http://www.kent.ac.uk/ims/personal/jeg28/

  28. Hansen, P.R., Lunde, A.: Realized variance and market microstructure noise. J. Bus. Econ. Stat. 24, 127–161 (2006)

    Article  MathSciNet  Google Scholar 

  29. Hayashi, T., Yoshida, N.: On covariance estimation of non-synchronously observed diffusion processes. Bernoulli 11, 359–379 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Huang, X., Tauchen, G.: The relative contribution of jumps to total price variance. J. Financ. Econom. 3, 456–499 (2005)

    Article  Google Scholar 

  31. Jacod, J.: Limit of random measures associated with the increments of a Brownian semimartingale. Preprint number 120, Laboratoire de Probabilitiés, Université Pierre et Marie Curie, Paris (1994)

  32. Jacod, J.: On continuous conditional Gaussian martingales and stable convergence in law. Séminaire de Probabilités XXXI, LNM 1655, 232–246 (1997)

    Google Scholar 

  33. Jacod, J., Protter, P.E.: Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26, 267–307 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  35. Jiang, G.J., Oomen, R.C.A.: Testing for jumps when asset prices are observed with noise—a “swap variance” approach. J. Econom. 144, 352–370 (2008)

    Article  Google Scholar 

  36. Kalnina, I., Linton, O.: Estimating quadratic variation consistently in the presence of correlated measurement error. J. Econom. 147, 47–59 (2008)

    Article  Google Scholar 

  37. Large, J.: Estimating quadratic variation when quoted prices change by a constant increment. Working paper, All Souls College, University of Oxford (2006). Available at http://www.economics.ox.ac.uk/members/jeremy.large/

  38. Mancini, C.: Estimation of the characteristics of jump of a general jump-diffusion. Scand. Actuar. J. 2004(1), 42–52 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Martens, M., van Dijk, D.: Measuring volatility with the realized range. J. Econom. 138, 181–207 (2007)

    Article  Google Scholar 

  40. Oomen, R.C.A.: Properties of bias-corrected realized variance under alternative sampling schemes. J. Financ. Econom. 4, 555–577 (2005)

    Google Scholar 

  41. Parkinson, M.: The extreme value method for estimating the variance of the rate of return. J. Bus. 53, 61–65 (1980)

    Article  Google Scholar 

  42. Podolskij, M., Vetter, M.: Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps. Working paper, CREATES, University of Aarhus and Ruhr University of Bochum, Bernoulli (2007, to appear)

  43. Protter, P.E.: Stochastic Integration and Differential Equations, 1st edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  44. Rényi, A.: On stable sequences of events. Sankhya: Indian J. Stat. Ser. A 25, 293–302 (1963)

    MATH  Google Scholar 

  45. Rogers, L.C.G., Satchell, S.E.: Estimating variances from high, low, and closing prices. Ann. Appl. Probab. 1, 504–512 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  46. Sheppard, K.: Realized covariance and scrambling. Working paper, University of Oxford (2006). Available at http://www.cireq.umontreal.ca/activites/060423/Papiers/Sheppard.pdf

  47. Zhang, L.: Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach. Bernoulli 12, 1019–1043 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zhang, L., Mykland, P.A., Aït-Sahalia, Y.: A tale of two time scales: determining integrated volatility with noisy high-frequency data. J. Am. Stat. Assoc. 100(472), 1394–1411 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Christensen.

Additional information

We should like to thank an anonymous referee and the associate editor for insightful comments on an earlier draft. Parts of this paper were written while Kim Christensen was at the University of California, San Diego, whose hospitality is gratefully acknowledged. Mark Podolskij received financial support from CREATES funded by the Danish National Research Foundation, and Mathias Vetter was supported by the Deutsche Forschungsgemeinschaft grant SFB 475 “Reduction of Complexity in Multivariate Data Structures.” The code for this paper was written in the Ox programming language, due to Doornik (2002). All views expressed here are those of the authors and do not necessarily represent the views of Nordea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, K., Podolskij, M. & Vetter, M. Bias-correcting the realized range-based variance in the presence of market microstructure noise. Finance Stoch 13, 239–268 (2009). https://doi.org/10.1007/s00780-009-0089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-009-0089-9

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation