Log in

Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

Analysis of the movement of anatomically defined reference axes at the femoral condyles relative to the tibia is appropriate for evaluating knee kinematics. However, such parameters have been previously employed only in studies utilizing stop-motion techniques. The purpose of this study was to evaluate in vivo dynamic kinematics for full range of motion in normal knees using the three-dimensional to two-dimensional registration technique and to compare them with previously reported normal knee kinematics obtained via stop-motion techniques.

Methods

Dynamic motion of the right knee was analyzed in 20 healthy volunteers (10 female, 10 male; mean age 37.2 years). Knee motion was observed when subjects squatted from standing with the knee fully extended to maximum flexion. We determined the following parameters: (1) changes to angles of the geometric center axis (GCA) on the tibial axial plane (rotation angle); (2) anteroposterior translations of the medial and lateral ends of the GCA; and (3) motion patterns in each phase during knee flexion.

Results

All subjects exhibited femoral external rotation (26.1°) relative to the tibia throughout knee flexion. The medial femoral condyle demonstrated anterior translation (5.5 mm) from full extension to 100° flexion, and demonstrated posterior translation (3.9 mm) after 100°, while the lateral femoral condyle demonstrated consistent posterior translation (15.6 mm) throughout knee flexion. All subjects showed medial pivot motion from full extension to nearly 120° flexion. From 120° flexion, bicondylar rollback motion was observed.

Discussion

Although the behavior of the medial femoral condyle in our analysis differed somewhat from that seen in previous cadaver studies, the results obtained using dynamic analysis were generally equivalent to those obtained in previous studies employing stop-motion techniques. These results provide control data for future dynamic kinematic analyses of pathological knees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. 2001;388:157–66.

    Article  PubMed  Google Scholar 

  2. Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82:1189–95.

    Article  PubMed  CAS  Google Scholar 

  3. Pinskerova V, Samuelson KM, Stammers J, Maruthainar K, Sosna A, Freeman MA. The knee in full flexion. J Bone Joint Surg Br. 2009;91:830–4.

    PubMed  CAS  Google Scholar 

  4. Kurosawa H, Walker PS, Abe S, Garg A, Hunter T. Geometry and motion of the knee for implant and orthotic design. J Biomech. 1985;18:487–99.

    Article  PubMed  CAS  Google Scholar 

  5. Walker PS, Kurosawa H, Rovick JS, Zimmerman RA. External knee joint design based on normal motion. J Rehabil Res Dev. 1985;22:9–22.

    Article  PubMed  CAS  Google Scholar 

  6. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. 1998;356:111–8.

    Article  PubMed  Google Scholar 

  7. Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1196–8.

    Article  PubMed  CAS  Google Scholar 

  8. Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA, Yamano Y. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1199–200.

    Article  PubMed  CAS  Google Scholar 

  9. Most E, Axe J, Rubash H, Li G. Sensitivity of the knee joint kinematics calculation to selection of flexion axes. J Biomech. 2004;37:1743–8.

    Article  PubMed  CAS  Google Scholar 

  10. Williams A, Logan M. Understanding tibio-femoral motion. Knee. 2004;11:81–8.

    Article  PubMed  Google Scholar 

  11. Asano T, Akagi M, Nakamura T. The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image matching technique. J Arthroplasty. 2005;20:1060–7.

    Article  PubMed  Google Scholar 

  12. Banks SA, Markovich GD, Hodge WA. In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty. 1997;12:297–304.

    Article  PubMed  CAS  Google Scholar 

  13. Hoff WA, Komistek RD, Dennis DA, Gabriel SM, Walker SA. Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech. 1998;13:455–72.

    Article  Google Scholar 

  14. Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Yoshikawa H, Tamura S. Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans Med Imaging. 2004;23:602–12.

    Article  PubMed  Google Scholar 

  15. Li G, Suggs J, Hanson G, Durbhakula S, Johnson T, Freiberg A. Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty. J Bone Joint Surg Am. 2006;88:395–402.

    Article  PubMed  Google Scholar 

  16. Komistek RD, Mahfouz MR, Bertin KC, Rosenberg A, Kennedy W. In vivo determination of total knee arthroplasty kinematics. J Arthroplasty. 2008;23:41–50.

    Article  PubMed  Google Scholar 

  17. Tamaki M, Tomita T, Yamazaki T, Hozack WJ, Yoshikawa H, Sugamoto K. In vivo kinematic analysis of a high-flexion posterior stabilized fixed-bearing knee prosthesis in deep knee-bending motion. J Arthroplasty. 2008;23:879–85.

    Article  PubMed  Google Scholar 

  18. Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.

    Article  PubMed  Google Scholar 

  19. Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26:428–34.

    Article  PubMed  Google Scholar 

  20. Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ. Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am. 2006;88:1826–34.

    Article  PubMed  Google Scholar 

  21. Sato T, Koga Y, Omori G. Three-dimensional lower extremity alignment assessment system. J Arthroplasty. 2004;19:620–8.

    Article  PubMed  Google Scholar 

  22. Kobayashi K, Tanaka N, Odagawa K, Sakamoto M, Tanabe Y. Image-based matching for natural knee kinematics measurement using single-plane fluoroscopy. J Jpn Soc Exp Mech. 2009;9:162–6.

    Google Scholar 

  23. Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–44.

    Article  PubMed  CAS  Google Scholar 

  24. Blaha JD, Mancinelli CA, Simons WH, Kish VL, Thyagarajan G. Kinematics of the human knee using an open chain cadaver model. Clin Orthop Relat Res. 2003;410:25–34.

    Article  PubMed  Google Scholar 

  25. Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–53.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the entire staff of the Department of Radiology of the Niigata University Medical and Dental Hospital for their technical support and cooperation.

Conflict of interest

The authors did not receive and will not receive any benefits or funding from any commercial party related directly or indirectly to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sato.

About this article

Cite this article

Tanifuji, O., Sato, T., Kobayashi, K. et al. Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy. J Orthop Sci 16, 710–718 (2011). https://doi.org/10.1007/s00776-011-0149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-011-0149-9

Keywords

Navigation