Log in

Gamma irradiation effectuality on the antibacterial and bioactivity behavior of multicomponent borate glasses against methicillin-resistant Staphylococcus aureus (MRSA)

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Abstract

Recently some borate bioactive glasses have been discovered to have an antibacterial effect when interacting with pathogenic bacteria. In this study, borate bioactive glasses (BG) doped with metal oxide (MO) ZnO, TiO2, TeO2, and CeO2 (encoded BG-Zn, BG-Ti, BG-Te, and BG-Ce, respectively) were prepared using the melt-quench method and have been characterized before and after gamma irradiation at 25.0 kGy. X-ray diffraction was performed to recognize the amorphous phases of all samples. Infrared absorption of glasses confirms vibrational bands in their wave number according to mixed main triangular and tetrahedral borate groups. After immersion in the simulated body fluid (SBF) solution, two characteristic peaks are generated indicating the bioactivity of the studied glasses through the formation of hydroxyapatite. SEM micrographs of glass after immersion display that the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved. The antibacterial activity of borate glasses was assessed against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 6538. The antibacterial results showed that BG-Te was  the most efficient against S. aureus ATCC 6538. Furthermore, BG-Te reduced biofilm production (79.23%) at the concentration of 20.0 mg/mL. (BG-Te) at 20.0 mg/mL significantly decreased the viability percent, cell count, protein content, and protease activity of S. aureus cells. BG-Te presents powerful activity against bacterial infections. It was necessary to equilibrate the antibacterial efficiency with the biocompatibility, so the MTT assay confirmed that BG-Te has low cytotoxicity on the human fibroblast cells (WI-38). It is expected that borate bioglass contained TeOcould be a promising biomaterial for bone tissue engineering.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9 
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The data are clearly applicable and the materials used are available.

References

  1. Reddy J (2006) Mechanics of advanced materials and structures. Mech Adv Mater Struct 13:443–455

    Google Scholar 

  2. Ottomeyer M, Mohammadkah A, Day D, Westenberg D (2016) Broad-spectrum antibacterial characteristics of four novel borate-based bioactive glasses. Adv Microbiol 6(10):776–787

    CAS  Google Scholar 

  3. Maany DA, Alrashidy ZM, Ghany NAA, Abdel-Fattah WI (2019) Comparative antibacterial study between bioactive glasses and vancomycin hydrochloride against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Egypt Pharm J 18(4):304

    Google Scholar 

  4. Liang W, Rahaman MN, Day DE, Marion NW, Riley GC, Mao JJ (2008) Bioactive borate glass scaffold for bone tissue engineering. J Non-Cryst Solids 354(15–16):1690–1696

    CAS  Google Scholar 

  5. ElBatal FH, ElKheshen A (2008) Preparation and characterization of some substituted bioglasses and their ceramic derivatives from the system SiO2–Na2O–CaO–P2O5 and effect of gamma irradiation. Mater Chem Phys 110(2–3):352–362

    CAS  Google Scholar 

  6. Haque M, Sartelli M, McKimm J, Bakar MA (2018) Health care-associated infections–an overview. Infect Drug Resist 11:2321

    PubMed  PubMed Central  Google Scholar 

  7. Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo TH, Oliver A, Cabot G, Kola A, Gastmeier P, Hogardt M (2020) Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol Med 12(3):e10264

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529(7586):336–343

    CAS  PubMed  Google Scholar 

  9. Drago L, Toscano M, Bottagisio M (2018) Recent evidence on bioactive glass antimicrobial and antibiofilm activity: a mini-review. Materials 11(2):326

    PubMed Central  Google Scholar 

  10. El-Batal H, ElKheshen AA, El-Bassyouni GT, Abd El Aty AA (2018) In vitro bioactivity behavior of some borate glasses and their glass-ceramic derivatives containing Zn2+, Ag+ or Cu2+ by immersion in phosphate solution and their anti-microbial activity fatma. Silicon 10:943–957

    CAS  Google Scholar 

  11. Moghanian A, Ghorbanoghli A, Kazem-Rostami M, Pazhouheshgar A, Salari E, Saghafi Yazdi M, Alimardani T, Jahani H, Sharifian Jazi F, Tahriri M (2020) Novel antibacterial Cu/Mg-substituted 58S-bioglass: synthesis, characterization and investigation of in vitro bioactivity. Int J Appl Glas Sci 11(4):685–698

    CAS  Google Scholar 

  12. Karau MJ, Schmidt-Malan SM, Albano M, Mandrekar JN, Rivera CG, Osmon DR, Oravec CP, Berry DJ, Abdel MP, Patel R (2020) Novel use of rifabutin and rifapentine to treat methicillin-resistant Staphylococcus aureus in a rat model of foreign body osteomyelitis. J Infect Dis 222(9):1498–1504

    CAS  PubMed  Google Scholar 

  13. Phetnin R, Rattanachan ST (2015) Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres. J Sol-Gel Sci Technol 75(2):279–290

    CAS  Google Scholar 

  14. Chien C-S, Lin C-J, Ko C-J, Tseng S-P, Shih C-J (2018) Antibacterial activity of silver nanoparticles (AgNP) confined to mesostructured silica against methicillin-resistant Staphylococcus aureus (MRSA). J Alloy Compd 747:1–7

    CAS  Google Scholar 

  15. Impey RE, Hawkins DA, Sutton JM, Soares da Costa TP (2020) Overcoming intrinsic and acquired resistance mechanisms associated with the cell wall of Gram-negative bacteria. Antibiotics 9(9):623

    CAS  PubMed Central  Google Scholar 

  16. Matharu RK, Charani Z, Ciric L, Illangakoon UE, Edirisinghe M (2018) Antimicrobial activity of tellurium-loaded polymeric fiber meshes. J Appl Polym Sci 135(25):46368

    Google Scholar 

  17. Lu M, Liao J, Dong J, Wu J, Qiu H, Zhou X, Li J, Jiang D, He T-C, Quan Z (2016) An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials. Sci Rep 6(1):1–14

    Google Scholar 

  18. De Giglio R, Di Vieste G, Mondello T, Balduzzi G, Masserini B, Formenti I, Lodigiani S, Pallavicini D, Pintaudi B, Mazzone A (2021) Efficacy and safety of bioactive glass S53P4 as a treatment for diabetic foot osteomyelitis. J Foot Ankle Surg 60(2):292–296

    PubMed  Google Scholar 

  19. El-Tablawy S, Abd-Allah W, Araby E (2018) Efficacy of irradiated bioactive glass 45S5 on attenuation of microbial growth and eradication of biofilm from AISI 316 L discs: In-vitro study. SILICON 10(3):931–942

    CAS  Google Scholar 

  20. da Silva Aquino KA (2012) Sterilization by gamma irradiation. Gamma Radiat 9:172–202

    Google Scholar 

  21. Baskaran C, Velu S, Kumaran K (2012) The efficacy of Carica papaya leaf extract on some bacterial and a fungal strain by well diffusion method. Asian Pac J Trop Dis 2:S658–S662

    Google Scholar 

  22. Fathy RM, Salem MSE-D, Mahfouz AY (2020) Biogenic synthesis of silver nanoparticles using Gliocladium deliquescens and their application as household sponge disinfectant. Biol Trace Elem Res 196(2):662–678

    CAS  PubMed  Google Scholar 

  23. Salem MSE-D, Mahfouz AY, Fathy RM (2021) The antibacterial and antihemolytic activities assessment of zinc oxide nanoparticles synthesized using plant extracts and gamma irradiation against the uro-pathogenic multidrug resistant Proteus vulgaris. Biometals 34(1):175–196

    CAS  PubMed  Google Scholar 

  24. El-Shazly AN, El-Sayyad GS, Hegazy AH, Hamza MA, Fathy RM, El Shenawy E, Allam NK (2021) Superior visible light antimicrobial performance of facet engineered cobalt doped TiO2 mesocrystals in pathogenic bacterium and fungi. Sci Rep 11(1):1–14

    Google Scholar 

  25. Huang W, Wang J-Q, Song H-Y, Zhang Q, Liu G-F (2017) Chemical analysis and in vitro antimicrobial effects and mechanism of action of Trachyspermum copticum essential oil against Escherichia coli. Asian Pac J Trop Med 10(7):663–669

    CAS  PubMed  Google Scholar 

  26. Kung J-C, Wang W-H, Lee C-L, Hsieh H-C, Shih C-J (2020) Antibacterial activity of silver nanoparticles (AgNP) confined to mesostructured, silica-based calcium phosphate against methicillin-resistant Staphylococcus aureus (MRSA). Nanomaterials 10(7):1264

    CAS  PubMed Central  Google Scholar 

  27. Kiersztyn B, Siuda W, Chrost R (2017) Coomassie blue G250 for visualization of active bacteria from lake environment and culture. Pol J Microbiol 66(3):365–373

    PubMed  Google Scholar 

  28. Arvidson S, Holme T, Lindholm B (1973) Studies on extracellular proteolytic enzymes from Staphylococcus aureus: I. Purification and characterization of one neutral and one alkaline protease. Biochim Biophys Acta BBA-Enzymol 302(1):135–148

    CAS  Google Scholar 

  29. Fathy RM, Mahfouz AY (2021) Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities. J Nanostruct Chem 11(2):301–321

    CAS  Google Scholar 

  30. Wu T, Li M, Zhu X, Lu X (2021) Research on non-pneumatic tire with gradient anti-tetrachiral structures. Mech Adv Mater Struct 28:2351–2359

    Google Scholar 

  31. Marzouk M, ElBatal F, Ghoneim N (2018) In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5. Appl Phys A 124(2):1–12

    Google Scholar 

  32. El Batal H, Azooz M, Ibrahim MM, Ali AM, Somaily H, Sayed M (2020) Bioactivity behavior of multicomponent (P2O5–B2O3-SiO2-Na2O-CaF2) glasses doped with ZnO, CuO or Ag2O and their glass-ceramics. SILICON 13:1–11

    Google Scholar 

  33. Thian E, Huang J, Vickers M, Best S, Barber Z, Bonfield W (2006) Silicon-substituted hydroxyapatite (SiHA): a novel calcium phosphate coating for biomedical applications. J Mater Sci 41(3):709–717

    CAS  Google Scholar 

  34. Luzhetsky AV, Petrov VA, Yudintsev SV, Malkovsky VI, Ojovan MI, Nickolsky MS, Shiryaev AA, Danilov SS, Ostashkina EE (2020) Effect of gamma irradiation on structural features and dissolution of nuclear waste Na–Al–P glasses in water. Sustainability 12(10):4137

    CAS  Google Scholar 

  35. Primak W (1972) Mechanism for the radiation compaction of vitreous silica. J Appl Phys 43(6):2745–2754

    CAS  Google Scholar 

  36. Tarte P (1964) Identification of Li-O bands in the infra-red spectra of simple lithium compounds containing LiO4 tetrahedra. Spectrochim Acta 20(2):238–240

    CAS  Google Scholar 

  37. Margha FH, Abdelghany AM (2012) Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives. Process Appl Ceram 6(4):183–192

    CAS  Google Scholar 

  38. Vallet-Regí M, Romero E, Ragel C, LeGeros R (1999) XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J Biomed Mater Res 44(4):416–421

    PubMed  Google Scholar 

  39. Kamitsos E (2003) Infrared studies of borate glasses. Phys Chem Glasses 44(2):79–87

    CAS  Google Scholar 

  40. Luo J, Smith NJ, Pantano CG, Kim SH (2018) Complex refractive index of silica, silicate, borosilicate, and boroaluminosilicate glasses–Analysis of glass network vibration modes with specular-reflection IR spectroscopy. J Non-Cryst Solids 494:94–103

    CAS  Google Scholar 

  41. Saudi H, Abd-Allah W (2021) Structural, physical and radiation attenuation properties of tungsten doped zinc borate glasses. J Alloys Compd 860:158225

    CAS  Google Scholar 

  42. Abd-Allah W, Saudi H, Shaaban KS, Farroh H (2019) Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30-x) BaO-x ZnO glass system. Appl Phys A Mater Sci Process 125 (4)

  43. Rajendran V, Devi AG, Azooz M, El-Batal F (2007) Physicochemical studies of phosphate based P2O5–Na2O–CaO–TiO2 glasses for biomedical applications. J Non-Cryst Solids 353(1):77–84

    CAS  Google Scholar 

  44. Sharma K, Dixit A , Singh S, Jagannath, Bhattacharya S, Sharma PK, Yusuf SM, Tyagid AK, Kothiyala GP (2009) Preparation and studies on surface modifications of calcium-silico-phosphate ferrimagnetic glass-ceramics in simulated body fluid. Mater Sci Eng C 31(7):2226–2233

    Google Scholar 

  45. Koohkan R, Hooshmand T, Mohebbi-Kalhori D, Tahriri M, Marefati MT (2018) Synthesis, characterization, and in vitro biological evaluation of copper-containing magnetic bioactive glasses for hyperthermia in bone defect treatment. ACS Biomater Sci Eng 4(5):1797–1811

    CAS  PubMed  Google Scholar 

  46. Brauer DS, Karpukhina N, Law RV, Hill RG (2010) Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications. J Non-Cryst Solids 356(44–49):2626–2633

    CAS  Google Scholar 

  47. Farag MM, Al-Rashidy ZM, Ahmed MM (2019) In vitro drug release behavior of Ce-doped nano-bioactive glass carriers under oxidative stress. J Mater Sci - Mater Med 30(2):18

    PubMed  Google Scholar 

  48. Farag M, Abd-Allah W, Ahmed HY (2017) Study of the dual effect of gamma irradiation and strontium substitution on bioactivity, cytotoxicity, and antimicrobial properties of 45S5 bioglass. J Biomed Mater Res, Part A 105(6):1646–1655

    CAS  Google Scholar 

  49. Farag M, Abd-Allah W, Ibrahim A (2015) Effect of gamma irradiation on drug releasing from nano-bioactive glass. Drug Deliv Transl Res 5(1):63–73

    CAS  PubMed  Google Scholar 

  50. Beherei HH, Mohamed KR, El-Bassyouni GT (2009) Fabrication and characterization of bioactive glass (45S5)/titania biocomposites. Ceram Int 35(5):1991–1997

    CAS  Google Scholar 

  51. Jia W-T, Fu Q, Huang W-H, Zhang C-Q, Rahaman MN (2015) Comparison of borate bioactive glass and calcium sulfate as implants for the local delivery of teicoplanin in the treatment of methicillin-resistant Staphylococcus aureus-induced osteomyelitis in a rabbit model. Antimicrob Agents Chemother 59(12):7571–7580

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rivadeneira J, Gorustovich A (2017) Bioactive glasses as delivery systems for antimicrobial agents. J Appl Microbiol 122(6):1424–1437

    CAS  PubMed  Google Scholar 

  53. Schuhladen K, Stich L, Schmidt J, Steinkasserer A, Boccaccini AR, Zinser E (2020) Cu, Zn doped borate bioactive glasses: antibacterial efficacy and dose-dependent in vitro modulation of murine dendritic cells. Biomater Sci 8(8):2143–2155

    CAS  PubMed  Google Scholar 

  54. Rodriguez O, Stone W, Schemitsch EH, Zalzal P, Waldman S, Papini M, Towler MR (2017) Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants. Heliyon 3(10):e00420

    PubMed  PubMed Central  Google Scholar 

  55. Berlutti F, Frioni A, Natalizi T, Pantanella F, Valenti P (2014) Influence of sub-inhibitory antibiotics and flow condition on Staphylococcus aureus ATCC 6538 biofilm development and biofilm growth rate: BioTimer assay as a study model. J Antibiot 67(11):763–769

    CAS  Google Scholar 

  56. Passos TF, Souza MT, Zanotto ED, de Souza CWO (2021) Bactericidal activity and biofilm inhibition of F18 bioactive glass against Staphylococcus aureus. Mater Sci Eng C 118:111475

    CAS  Google Scholar 

  57. Begum S, Johnson WE, Worthington T, Martin RA (2016) The influence of pH and fluid dynamics on the antibacterial efficacy of 45S5 Bioglass. Biomed Mater 11(1):015006

    PubMed  Google Scholar 

  58. Souza M, Campanini L, Chinaglia C, Peitl O, Zanotto E, Souza C (2017) Broad-spectrum bactericidal activity of a new bioactive grafting material (F18) against clinically important bacterial strains. Int J Antimicrob Agents 50(6):730–733

    CAS  PubMed  Google Scholar 

  59. da Silva LCA, Neto FG, Pimentel SSC, da Silva PR, Sato F, Retamiro KM, Fernandes NS, Nakamura CV, Pedrochi F, Steimacher A (2021) The role of Ag2O on antibacterial and bioactive properties of borate glasses. J Non-Cryst Solids 554:120611

    Google Scholar 

  60. Pandit A, Adholeya A, Cahill D, Brau L, Kochar M (2020) Microbial biofilms in nature: unlocking their potential for agricultural applications. J Appl Microbiol 129(2):199–211

    CAS  PubMed  Google Scholar 

  61. Sheppard DC, Howell PL (2016) Biofilm exopolysaccharides of pathogenic fungi: lessons from bacteria. J Biol Chem 291(24):12529–12537

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Coraça-Huber DC, Fille M, Hausdorfer J, Putzer D, Nogler M (2014) Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro. J Orthop Res 32(1):175–177

    PubMed  Google Scholar 

  63. Petříčková K, Chroňáková A, Zelenka T, Chrudimský T, Pospíšil S, Petříček M, Krištůfek V (2015) Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques. Front Microbiol 6:814

    PubMed  PubMed Central  Google Scholar 

  64. Chang H-Y, Cang J, Roy P, Chang H-T, Huang Y-C, Huang C-C (2014) Synthesis and antimicrobial activity of gold/silver–tellurium nanostructures. ACS Appl Mater Interfaces 6(11):8305–8312

    CAS  PubMed  Google Scholar 

  65. Zhanel GG, Walters M, Laing N, Hoban DJ (2001) In vitro pharmacodynamic modeling simulating free serum concentrations of fluoroquinolones against multidrug-resistant Streptococcus pneumoniae. J Antimicrob Chemother 47:435–440

    CAS  Google Scholar 

  66. Ahmed A, Ali A, Mahmoud DA, El-Fiqi A (2011) Study on the preparation and properties of silver-doped phosphate antibacterial glasses (part I). Solid State Sci 13(5):981–992

    CAS  Google Scholar 

  67. Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR (2012) Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull 47(11):3719–3725. https://doi.org/10.1016/j.materresbull.2012.06.034

    Article  CAS  Google Scholar 

  68. Hu S, Chang J, Liu M, Ning C (2009) Study on antibacterial effect of 45S5 Bioglass®. J Mater Sci Mater Med 20(1):281–286

    CAS  PubMed  Google Scholar 

  69. Abdelghany A, Behairy A (2020) Optical parameters, antibacterial characteristics and structure correlation of copper ions in cadmium borate glasses. J Market Res 9(5):10491–10497

    CAS  Google Scholar 

  70. Naseri S, Lepry WC, Maisuria VB, Tufenkji N, Nazhat SN (2019) Development and characterization of silver-doped sol-gel-derived borate glasses with anti-bacterial activity. J Non-Cryst Solids 505:438–446

    CAS  Google Scholar 

  71. Rau JV, De Bonis A, Curcio M, Schuhladen K, Barbaro K, De Bellis G, Teghil R, Boccaccini AR (2020) Borate and silicate bioactive glass coatings prepared by nanosecond pulsed laser deposition. Coatings 10(11):1105

    CAS  Google Scholar 

  72. Boschetto F, Ngoc Doan H, Phong Vo P, Zanocco M, Zhu W, Sakai W, Adachi T, Ohgitani E, Tsutsumi N, Mazda O (2020) Antibacterial and osteoconductive effects of chitosan/polyethylene oxide (PEO)/bioactive glass nanofibers for orthopedic applications. Appl Sci 10(7):2360

    CAS  Google Scholar 

  73. Cunha MT, Murça MA, Nigro S, Klautau GB, Salles MJC (2018) In vitro antibacterial activity of bioactive glass S53P4 on multiresistant pathogens causing osteomyelitis and prosthetic joint infection. BMC Infect Dis 18(1):1–6

    Google Scholar 

  74. Chen W, Liang J, He Z, Jiang W (2016) Preliminary study on total protein extraction methods from Enterococcus faecalis biofilm. Genet Mol Res 15 (10.4238)

  75. Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151(2):369–374

    CAS  PubMed  Google Scholar 

  76. Wilkinson HN, Iveson S, Catherall P, Hardman MJ (2018) A novel silver bioactive glass elicits antimicrobial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus in an ex vivo skin wound biofilm model. Front Microbiol 9:1450

    PubMed  PubMed Central  Google Scholar 

  77. Singh V, Phukan UJ (2019) Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 208(5):585–607

    PubMed  Google Scholar 

  78. Modglin VC, Brown RF, Jung SB, Day DE (2013) Cytotoxicity assessment of modified bioactive glasses with MLO-A5 osteogenic cells in vitro. J Mater Sci Mater Med 24(5):1191–1199. https://doi.org/10.1007/s10856-013-4875-8

    Article  CAS  PubMed  Google Scholar 

  79. Rismanchian M, Khodaeian N, Bahramian L, Fathi M, Sadeghi-Aliabadi H (2013) In-vitro comparison of cytotoxicity of two bioactive glasses in micropowder and nanopowder forms. Iran J Pharm Res IJPR 12(3):437

    CAS  PubMed  Google Scholar 

  80. Shoaib M, Bahadur A, Iqbal S, Al-Anazy MM, Laref A, Tahir MA, Channar PA, Noreen S, Yasir M, Iqbal A (2021) Magnesium doped mesoporous bioactive glass nanoparticles: a promising material for apatite formation and mitomycin c delivery to the MG-63 cancer cells. J Alloys Compd 866:159013

    CAS  Google Scholar 

  81. Shoaib M, Saeed A, Akhtar J, Rahman MSU, Ullah A, Jurkschat K, Naseer MM (2017) Potassium-doped mesoporous bioactive glass: synthesis, characterization and evaluation of biomedical properties. Mater Sci Eng, C 75:836–844

    CAS  Google Scholar 

Download references

Funding

There was no funding provided.

Author information

Authors and Affiliations

Authors

Contributions

All authors were contribute in the output and writing the manuscript. Dr.W.M. Abd-Allah has synthesized and characterized the borate bioglass and analyzed the results. Dr. Rasha Mohammad Fathy accomplished the antibacterial and cytotoxicity experiments and analyzed the results.

Corresponding author

Correspondence to Rasha Mohammad Fathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent to participate

Not Applicable.

Ethical approval

No humans or animal experiments were included in the study therefore, no ethical approval was acquired.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Allah, W.M., Fathy, R.M. Gamma irradiation effectuality on the antibacterial and bioactivity behavior of multicomponent borate glasses against methicillin-resistant Staphylococcus aureus (MRSA). J Biol Inorg Chem 27, 155–173 (2022). https://doi.org/10.1007/s00775-021-01918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01918-z

Keywords

Navigation