Log in

Bioautography and liquid chromatography‒mass spectrometry studies of Meyna spinosa Roxb. ex Link leaf methanolic extracts

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

Meyna spinosa Roxb. ex Link, locally known as “Haloo”, was sampled from Surgana, Nasik, and is reported to have many ethnobotanical uses. This study aims at analyzing and isolating the bioactive components responsible for the antimicrobial activity of the plant’s leaf methanolic extracts. Antimicrobial activity was studied using ditch-plate technique and bioautography. Ditch-plate method showed antimicrobial activity against Staphylococcus aureus. Bioautography in which thin-layer chromatography (TLC) is coupled to bioassay technique showed antimicrobial activity at the application spot against Pseudomonas aeruginosa. The compound/s were collected and concentrated by preparative TLC. The concentrated bioautography isolate (BI) and the leaf methanolic extract (ML) of M. spinosa Roxb. ex Link were subjected to liquid chromatography (LC) followed by electrospray ionization‒quadrupole-time-of-flight‒mass spectrometry (ESI‒Q-TOF‒MS), to compare the bioactive components. It was found that BI showed 10-deoxymethymycin, dihydrodeoxystreptomycin, 5E,8E,11E-hexadecatrienoic acid, deferoxime that have antibacterial properties. ML in addition shows quercetin, kaempferol, 3,4,5-trihydroxystilbene, swietenine, which have antioxidant and antimicrobial activities. We conclude that the antimicrobial activity exhibited by the ML was due to the synergistic action of all these compounds. The minimum inhibitory concentration (MIC) of ML by microdilution revealed to be 375 mg/mL for S. aureus and 125 mg/mL for P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data will be available on request.

References

  1. Patil DA (2012) Upliftment of Tribals of Dhule and Nandurbar districts (Maharashtra, India). Life Sci Leaflets 3:17–22

    Google Scholar 

  2. Deshmukh BS, Waghmode A (2011) Role of wild edible fruits as a food resource: traditional knowledge. Int J Pharm Biol Sci 2:919–924

    Google Scholar 

  3. Deshmukh BS, Shinde V (2010) Fruits in the wilderness: a potential of local food resource. Int J Pharm Bio Sci 1:1–5

    Google Scholar 

  4. Jitu B (2008) Folk medicinal plant used in gynecological disorders in Tinsukia district, Assam, India. Fitoterapia 79:388–392

    Article  Google Scholar 

  5. Wangmo S, Malpathak NP, Deokule SS (2009) Pharmacognostic study of Vangueria spinosa (Roxb.) Hook, an important medicinal drug. J Renew Nat Res Bhutan 5:127–137

    Google Scholar 

  6. Almeida M (2001) Flora of Maharashtra (Rubiaceae to Ehretiaceae). St. Xavier's College, Mumbai, p. 301–464

  7. Ganesh T, Saikat S, Chakraborty R, Suresh Kumar SV, Raghavendra HG, Sevukarajan M (2010) In Vitro antioxidant activity of Meyna laxiflora seeds. Int J Chem Pharm Sci 1:5–8

    Google Scholar 

  8. Soroj KC, Indranil B, Goutam C (2011) Isolation and identification of bioactive antibacterial components in leaf extracts of Vangueria spinosa (Rubiaceae). Asian Pac J Trop Dis 4:35–40

    Article  Google Scholar 

  9. Saikat S, Biplab D, Devanna N, Raja C (2013) Hypoglycemic and hypolipidemic effect of Meyna spinosa leaves in high fat diet-alloxan induced type 2 diabetic rats. Bangladesh J Pharmacol 8:181–185

    Google Scholar 

  10. Goswami S, Bora L, Das J, Begam M (2006) In vitro evaluation of some medicinal plants against Candida albicans. J Cell Tissue Res 6:837–839

    Google Scholar 

  11. Yasmin M, Hossain KS, Bashar MA (2008) Effects of some angiospermic plant extracts on in-vitro vegetative growth of Fusarium moniliforme. Bangladesh J Bot 37:85–88

    Article  Google Scholar 

  12. Saikat S, Raja C (2017) Meyna spinosa Roxb: an unexplored ethnomedicinal plant. Int J Green Pharm 11:S332–S337

    Google Scholar 

  13. Gogoi J, Sarma PK (1995) Chemical investigation of Meyna laxiflora Robyns syn. Vangueria spinosa Hook II. Indian Drugs 32:442–445

    Google Scholar 

  14. Gogoi J, Sarma PK (1997) Chemical investigation of Meyna laxiflora Robyns syn. Vangueria spinosa Hook II. Indian Drugs 34:610–611

    CAS  Google Scholar 

  15. Chatterjee SK, Bhattacharjee I, Chandra G (2011) Isolation and identification of bioactive antibacterial components in leaf extracts of Vangueria spinosa (Rubiaceae). Asian Pac J Trop Med 4:35–40

    Article  CAS  PubMed  Google Scholar 

  16. De B, Sen S, Devanna N, Chakraborty R, Chaudhury R (2015) Antioxidant activity of a flavonoid isolated from Meyna spinosa leaves. Asian J Chem 27:389–390

    Article  CAS  Google Scholar 

  17. Nostro A, Germanò MP, D’Angelo V, Marino A, Cannatelli MA (2000) Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 30:379–384

    Article  CAS  PubMed  Google Scholar 

  18. Iscan G, Kirimer N, Kürkcüoǧlu M, Başer KHC, Demirci F (2002) Antimicrobial screening of Mentha piperita essential oils. J Agric Food Chem 50:3943–3946

    Article  CAS  PubMed  Google Scholar 

  19. Alves TMA, Kloos H, Zani CL (2003) Eleutherinone, a Novel Fungitoxic Naphthoquinone from Eleutherine bulbosa (Iridaceae). Mem Inst Oswaldo Cruz 98:709–712

    Article  CAS  PubMed  Google Scholar 

  20. Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74:113–123

    Article  CAS  PubMed  Google Scholar 

  21. Gende LB, Ignazio F, Rosalia F, Martin JE (2008) Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. Bull Insectol 61:1–4

    Google Scholar 

  22. Bag A, Bhattacharyya SK, Pal NK, Chattopadhyay RR (2012) In vitro antibacterial potential of Eugenia jambolana seed extracts against multidrug-resistant human bacterial pathogens. Microbiol Res 167:352–357

    Article  PubMed  Google Scholar 

  23. Bhaigyabati TH, Grihanjali PD, Bag GC (2014) Total flavonoid content and antioxidant activity of aqueous rhizome extract of three hedychium species of Manipur Valley. Res J Pharm Biol Chem Sci 5:970

    CAS  Google Scholar 

  24. European Bioinformatics Institute (2014) ChEBI Main. EMBL-EBI. https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:29706. Accessed 24 June 2018

  25. European Bioinformatics Institute (2017) ChEBI Main. EMBL-EBI. https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:135831. Accessed 24 June 2018

  26. van Asbeck BS, Marcelis JH, Marx JJ, Struyvenberg A, van Kats JH, Verhoef J (1983) Inhibition of bacterial multiplication by the iron chelator deferoxamine: potentiating effect of ascorbic acid. Eur J Clin Microbiol 2:426–431

    Article  PubMed  Google Scholar 

  27. Srinivasan GV, Sharanappa P, Leela NK, Sadashiva CT, Vijayan KK (2005) Chemical composition and antimicrobial activity of the essential oil of Leea indica (Burm. f.) Merr. Flowers Nat Prod Rad 8:488–493

    Google Scholar 

  28. Vinay K, Bhatnagar AK, Srivastava JN (2011) Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. J Med Plant Res 5:7043–7048

    Google Scholar 

  29. Naoya O, Kohsuke Y, Takao S, Yasuhiro I (2014) Identification of the n-1 fatty acid as an antibacterial constituent from the edible freshwater cyanobacterium Nostoc verrucosum. Biosci Biotechnol Biochem 78:1147–1150

    Article  Google Scholar 

  30. Jon JK, Anthony JC, Joseph P (1972) Truant, relationship of chemical structure and antimicrobial activity of alkyl amides and amines. Antimicrob Agents Chemother 2:492–498

    Article  Google Scholar 

  31. Greenway DL, Dyke KG (1979) Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J Gen Microbiol 115:233–245

    Article  CAS  PubMed  Google Scholar 

  32. Knapp HR, Melly MA (1986) Bactericidal effects of polyunsaturated fatty acids. J Infect Dis 154:84–94

    Article  CAS  PubMed  Google Scholar 

  33. Galbraith H, Miller TB (1973) Effect of long-chain fatty acids on bacterial respiration and amino acid uptake. J Appl Bacteriol 36:659–675

    Article  CAS  PubMed  Google Scholar 

  34. Butcher GW, King G, Dyke KG (1976) Sensitivity of Staphylococcus aureus to unsaturated fatty acids. J Gen Microbiol 94:290–296

    Article  CAS  PubMed  Google Scholar 

  35. Chamberlain NR, Mehrtens BG, **ong Z, Kapral FA, Boardman JL, Rearick JI (1991) Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infect Immun 59:4332–4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abdelmonim OAH, Saad MHA (2015) Chemical composition and antimicrobial activity of Sudanese Lupinus termis L. root extracts. J Pharm Innov 4:1–4

    Google Scholar 

  37. Jiaojiao Z, Yicun C, Fen Y, Weizhou C, Ganggang S (2012) Chemical Composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax. Mar Drugs 10:2634–2647

    Article  Google Scholar 

  38. Louay L, Amal AY, Ibrar AS, Aisha AK, Amira AJ, Amira AW, Anwar AS (2018) Bioprospecting novel bioactive molecules from the seaweeds in Oman. Asian J Fish Aquat 1:1–12

    Google Scholar 

  39. Amy CK, Tiffany LW, Corey DB, Elizabeth PR (2013) Antibacterial activity and phytochemical profile of fermented Camellia sinensis (fuzhuan tea). Food Res Int 53:945–949

    Article  Google Scholar 

  40. Arthur FN, James MS, Robert RM, Frank CM, Evald LS (1969) Antimicrobial activity of some n-substituted amides of long-chain fatty acids. Appl Microbiol 18:1050–1056

    Article  Google Scholar 

  41. Jon JK, Dennis MS, Anthony JC, Joseph PT (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemo-ther 2(1):23–28

    Article  Google Scholar 

  42. Sara R, Yanmei H, Tahyra R, Frank D, James MB (2017) Identification and characterization of a chemical compound that inhibits methionyl-tRNA synthetase from Pseudomonas aeruginosa. Curr Drug Discov Technol 14:156–168

    Google Scholar 

  43. Shahidur AKMR, Azad AKC, Husne-Ara A, Sheikh ZR, Mohammad SA, Lutfun N et al (2009) Antibacterial activity of two limonoids from Swietenia mahagoni against multiple-drug-resistant (MDR) bacterial strains. J Nat Med 63:41–45

    Article  Google Scholar 

  44. Krishnaveni M, Nandhini N, Dhanalakshmi R (2014) GC–MS analysis of phytochemicals, fatty acids and antimicrobial potency of dry christmas lima beans. Int J Pharm Sci Rev Res 9:3–66

    Google Scholar 

  45. Allen YC, Yi CC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138:2099–2107

    Article  Google Scholar 

  46. Donatella P, Maria PF, Fatima A, Andrea C, De Anna F, Giampietro R et al (2016) Resveratrol (3,5,4’-trihydroxystilbene) and its properties in oral diseases. Exp Ther Med 14:3–9

    Google Scholar 

  47. Parul L, Deepak KR (2007) Quercetin: a versatile flavonoid. Internet J Med Update 2:22–37

    Google Scholar 

  48. Hui-Wen Y, Pin-Hung L, Fang-Hsiu S, Pe G-C, Yuk-Ying T, Sheng-Min H et al (2014) Tranylcypromine reduces herpes simplex virus 1 infection in mice. Antimicrob Agents Chemother 58:2807–2815

    Article  Google Scholar 

  49. Caroline MP, Antona JW (1995) Famciclovir a review of its pharmacological properties and therapeutic efficacy in herpes virus infection. Drugs 50:396–415

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the HRLC-MS Lab Staff at SAIF-IIT Bombay for providing LC‒ESI‒Q-TOF‒MS services for our work and TLC and preparative TLC service at Anchrom Enterprises Pvt. Ltd., Mulund, Mumbai.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. SK, SD and AP prepared the material, collected the data and its analysis. SK prepared the first draft of the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Damle.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadirvelu, S., Damle, S. & Pillai, A. Bioautography and liquid chromatography‒mass spectrometry studies of Meyna spinosa Roxb. ex Link leaf methanolic extracts. JPC-J Planar Chromat 34, 403–410 (2021). https://doi.org/10.1007/s00764-021-00134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-021-00134-4

Keywords

Navigation