Log in

Sarkopenie − Diagnostik und mögliche Therapien

Sarcopenia—diagnostics and possible treatment

  • Integrative Onkologie
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Sarkopenie bedeutet Verlust von Muskelmasse und -funktion. Die derzeitige Forschung zum Begriff der Sarkopenie fokussiert sich größtenteils auf geriatrische Patienten und zeigt deutlich, dass Sarkopenie die Fähigkeit der Alltagsbewältigung erheblich einschränkt, zu Bewegungsstörungen führen und die Lebensqualität mindern kann. Bei Tumorpatienten geht das Vorhandensein von Sarkopenie mit einer erhöhten Morbidität und Mortalität einher. Auch wenn sich das Verständnis für das Krankheitsbild und die Behandlung von Sarkopenie bereits gebessert hat, konnten Forschungsergebnisse bisher noch nicht in den klinischen Alltag integriert werden. Deshalb fasst dieser Artikel die aktualisierte Definition von Sarkopenie zusammen und bietet einen Einblick in die Therapiemethoden. Des Weiteren wird die Bedeutung Evidenz unterstützender Ernährungsinterventionen und Bewegung für die Therapie von Sarkopenie erläutert.

Abstract

Sarcopenia describes the loss of skeletal muscle mass and function. The current research on the topic of sarcopenia focuses mostly on geriatric patients and has revealed that sarcopenia can substantially impair the ability to perform activities of daily living, can lead to mobility disorders and also contributes to a lower quality of life. In cancer patients sarcopenia has also been found to be associated with increased morbidity and mortality. Even though the understanding of the concept and treatment of sarcopenia has already been improved, research findings have not yet been translated into clinical practice. Therefore, this article summarizes the updated definition of sarcopenia and provides insights into treatment methods. Furthermore, evidence supporting nutritional interventions and physical activity for treatment of sarcopenia are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Abb. 1

Notes

  1. Die Terminologie Muskelproteinsynthese und myofibrilläre Proteinsynthese werden austauschbar angewendet. Sie werden aber mit den gleichen Formeln berechnet.

Literatur

  1. Bozzetti F (2017) Forcing the vicious circle: sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann Oncol 28(9):2107–2118. https://doi.org/10.1093/annonc/mdx271

    Article  CAS  PubMed  Google Scholar 

  2. Lin JX, Lin JP, **e JW, Wang JB, Lu J, Chen QY et al (2019) Prognostic value and association of sarcopenia and systemic inflammation for patients with gastric cancer following radical gastrectomy. Oncologist. https://doi.org/10.1634/theoncologist.2018-0651

    Article  PubMed  PubMed Central  Google Scholar 

  3. Batsis JA, Mackenzie TA, Jones JD, Lopez-Jimenez F, Bartels SJ (2016) Sarcopenia, sarcopenic obesity and inflammation: Results from the 1999–2004 National Health and Nutrition Examination Survey. Clin Nutr 35(6):1472–1483. https://doi.org/10.1016/j.clnu.2016.03.028

    Article  PubMed  PubMed Central  Google Scholar 

  4. Morishita S (2016) Prevalence of Sarcopenia in cancer patients: review and future directions. Int J Phys Med Rehabil 4:342

    Google Scholar 

  5. Cespedes Feliciano EM, Lee VS, Prado CM, Meyerhardt JA, Alexeeff S, Kroenke CH et al (2017) Muscle mass at the time of diagnosis of nonmetastatic colon cancer and early discontinuation of chemotherapy, delays, and dose reductions on adjuvant FOLFOX: The C‑SCANS study. Cancer 123(24):4868–4877. https://doi.org/10.1002/cncr.30950

    Article  CAS  PubMed  Google Scholar 

  6. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169

    Article  PubMed  Google Scholar 

  7. Goisser S, Kob R, Sieber CC, Bauer JM (2019) Diagnosis and therapy of sarcopenia-an update. Internist 60(2):141–148. https://doi.org/10.1007/s00108-018-0551-x

    Article  CAS  Google Scholar 

  8. Gonzalez MC, Correia M, Heymsfield SB (2017) A requiem for BMI in the clinical setting. Curr Opin Clin Nutr Metab Care 20(5):314–321. https://doi.org/10.1097/mco.0000000000000395

    Article  PubMed  Google Scholar 

  9. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ et al (2013) Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 31(12):1539–1547. https://doi.org/10.1200/jco.2012.45.2722

    Article  PubMed  Google Scholar 

  10. Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozzetti F, Deans C et al (2015) Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol 33(1):90–99. https://doi.org/10.1200/jco.2014.56.1894

    Article  PubMed  Google Scholar 

  11. Gonzalez MC, Heymsfield SB (2017) Bioelectrical impedance analysis for diagnosing sarcopenia and cachexia: what are we really estimating? J Cachexia Sarcopenia Muscle 8(2):187–189. https://doi.org/10.1002/jcsm.12159

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reiss J, Iglseder B, Kreutzer M, Weilbuchner I, Treschnitzer W, Kassmann H et al (2016) Case finding for sarcopenia in geriatric inpatients: performance of bioimpedance analysis in comparison to dual X‑ray absorptiometry. BMC Geriatr 16:52. https://doi.org/10.1186/s12877-016-0228-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blauwhoff-Buskermolen S, Versteeg KS, de van der Schueren MA, den Braver NR, Berkhof J, Langius JA et al (2016) Loss of muscle mass during chemotherapy is predictive for poor survival of patients with metastatic colorectal cancer. J Clin Oncol 34(12):1339–1344. https://doi.org/10.1200/jco.2015.63.6043

    Article  CAS  PubMed  Google Scholar 

  14. Cespedes Feliciano EM, Avrutin E, Caan BJ, Boroian A, Mourtzakis M (2018) Screening for low muscularity in colorectal cancer patients: a valid, clinic-friendly approach that predicts mortality. J Cachexia Sarcopenia Muscle 9(5):898–908. https://doi.org/10.1002/jcsm.12317

    Article  PubMed  PubMed Central  Google Scholar 

  15. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L et al (2008) Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 9(7):629–635. https://doi.org/10.1016/s1470-2045(08)70153-0

    Article  PubMed  Google Scholar 

  16. Prado CM, Maia YL, Ormsbee M, Sawyer MB, Baracos VE (2013) Assessment of nutritional status in cancer—the relationship between body composition and pharmacokinetics. Anticancer Agents Med Chem 13(8):1197–1203

    Article  CAS  PubMed  Google Scholar 

  17. Dolan RD, Almasaudi AS, Dieu LB, Horgan PG, McSorley ST, McMillan DC (2019) The relationship between computed tomography-derived body composition, systemic inflammatory response, and survival in patients undergoing surgery for colorectal cancer. J Cachexia Sarcopenia Muscle 10(1):111–122. https://doi.org/10.1002/jcsm.12357

    Article  PubMed  Google Scholar 

  18. Okuno M, Goumard C, Kopetz S, Vega EA, Joechle K, Mizuno T et al (2019) Loss of muscle mass during preoperative chemotherapy as a prognosticator for poor survival in patients with colorectal liver metastases. Surgery 165(2):329–336. https://doi.org/10.1016/j.surg.2018.07.031

    Article  PubMed  Google Scholar 

  19. Peterson SJ, Mozer M (2017) Differentiating sarcopenia and cachexia among patients with cancer. Nutr Clin Pract 32(1):30–39. https://doi.org/10.1177/0884533616680354

    Article  PubMed  Google Scholar 

  20. Arends J, Bachmann P, Baracos V, Barthelemy N, Bertz H, Bozzetti F et al (2017) ESPEN guidelines on nutrition in cancer patients. Clin Nutr 36(1):11–48. https://doi.org/10.1016/j.clnu.2016.07.015

    Article  PubMed  Google Scholar 

  21. Arends J, Baracos V, Bertz H, Bozzetti F, Calder PC, Deutz NEP et al (2017) ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr 36(5):1187–1196. https://doi.org/10.1016/j.clnu.2017.06.017

    Article  CAS  PubMed  Google Scholar 

  22. Kim H, Yoo S, Park YS, Park SG (2018) Low dietary energy intake is associated with sarcopenia in cancer survivors: an analysis based on the Korean national health and nutrition examination survey 2008–2011. Nutr Res 53:15–22. https://doi.org/10.1016/j.nutres.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  23. Baracos VE, Mazurak VC, Bhullar AS (2019) Cancer cachexia is defined by an ongoing loss of skeletal muscle mass. Ann Palliat Med 8(1):3–12. https://doi.org/10.21037/apm.2018.12.01

    Article  PubMed  Google Scholar 

  24. Tessier AJ, Chevalier S (2018) An update on protein, leucine, omega-3 fatty acids, and vitamin D in the prevention and treatment of sarcopenia and functional decline. Nutrients. https://doi.org/10.3390/nu10081099

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cruz-Jentoft AJ, Kiesswetter E, Drey M, Sieber CC (2017) Nutrition, frailty, and sarcopenia. Aging Clin Exp Res 29(1):43–48. https://doi.org/10.1007/s40520-016-0709-0

    Article  PubMed  Google Scholar 

  26. Rolland Y, Czerwinski S, Abellan Van Kan G, Morley JE, Cesari M, Onder G et al (2008) Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 12(7):433–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujita S, Volpi E (2006) Amino acids and muscle loss with aging. J Nutr 136(1 Suppl):277s–280s. https://doi.org/10.1093/jn/136.1.277S

    Article  CAS  PubMed  Google Scholar 

  28. Timmerman KL, Volpi E (2008) Amino acid metabolism and regulatory effects in aging. Curr Opin Clin Nutr Metab Care 11(1):45–49. https://doi.org/10.1097/MCO.0b013e3282f2a592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morais JA, Chevalier S, Gougeon R (2006) Protein turnover and requirements in the healthy and frail elderly. J Nutr Health Aging 10(4):272–283

    CAS  PubMed  Google Scholar 

  30. Huang RY, Yang KC, Chang HH, Lee LT, Lu CW, Huang KC (2016) The association between total protein and vegetable protein intake and low muscle mass among the community-dwelling elderly population in northern Taiwan. Nutrients. https://doi.org/10.3390/nu8060373

    Article  PubMed  PubMed Central  Google Scholar 

  31. Groen BB, Res PT, Pennings B, Hertle E, Senden JM, Saris WH et al (2012) Intragastric protein administration stimulates overnight muscle protein synthesis in elderly men. Am J Physiol Endocrinol Metab 302(1):E52–E60. https://doi.org/10.1152/ajpendo.00321.2011

    Article  CAS  PubMed  Google Scholar 

  32. Welle S, Thornton CA (1998) High-protein meals do not enhance myofibrillar synthesis after resistance exercise in 62- to 75-yr-old men and women. Am J Physiol 274(4):E677–E683. https://doi.org/10.1152/ajpendo.1998.274.4.E677

    Article  CAS  PubMed  Google Scholar 

  33. Dirks ML, Wall BT, Nilwik R, Weerts DH, Verdijk LB, van Loon LJ (2014) Skeletal muscle disuse atrophy is not attenuated by dietary protein supplementation in healthy older men. J Nutr 144(8):1196–1203. https://doi.org/10.3945/jn.114.194217

    Article  CAS  PubMed  Google Scholar 

  34. Coelho-Junior HJ, Milano-Teixeira L, Rodrigues B, Bacurau R, Marzetti E, Uchida M (2018) Relative protein intake and physical function in older adults: a systematic review and Meta-analysis of observational studies. Nutrients. https://doi.org/10.3390/nu10091330

    Article  PubMed  PubMed Central  Google Scholar 

  35. Paddon-Jones D, Rasmussen BB (2009) Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 12(1):86–90. https://doi.org/10.1097/MCO.0b013e32831cef8b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. English KL, Mettler JA, Ellison JB, Mamerow MM, Arentson-Lantz E, Pattarini JM et al (2016) Leucine partially protects muscle mass and function during bed rest in middle-aged adults. Am J Clin Nutr 103(2):465–473. https://doi.org/10.3945/ajcn.115.112359

    Article  CAS  PubMed  Google Scholar 

  37. Dickinson JM, Gundermann DM, Walker DK, Reidy PT, Borack MS, Drummond MJ et al (2014) Leucine-enriched amino acid ingestion after resistance exercise prolongs myofibrillar protein synthesis and amino acid transporter expression in older men. J Nutr 144(11):1694–1702. https://doi.org/10.3945/jn.114.198671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, Kato H et al (2012) Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc 60(1):16–23. https://doi.org/10.1111/j.1532-5415.2011.03776.x

    Article  PubMed  Google Scholar 

  39. Deutz NE, Safar A, Schutzler S, Memelink R, Ferrando A, Spencer H et al (2011) Muscle protein synthesis in cancer patients can be stimulated with a specially formulated medical food. Clin Nutr 30(6):759–768. https://doi.org/10.1016/j.clnu.2011.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cholewa JM, Dardevet D, Lima-Soares F, de Araujo Pessoa K, Oliveira PH, Dos Pinho SJR et al (2017) Dietary proteins and amino acids in the control of the muscle mass during immobilization and aging: role of the MPS response. Amino Acids 49(5):811–820. https://doi.org/10.1007/s00726-017-2390-9

    Article  CAS  PubMed  Google Scholar 

  41. Engelen MP, Safar AM, Bartter T, Koeman F, Deutz NE (2015) High anabolic potential of essential amino acid mixtures in advanced nonsmall cell lung cancer. Ann Oncol 26(9):1960–1966. https://doi.org/10.1093/annonc/mdv271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ceglia L, Harris SS (2013) Vitamin D and its role in skeletal muscle. Calcif Tissue Int 92(2):151–162. https://doi.org/10.1007/s00223-012-9645-y

    Article  CAS  PubMed  Google Scholar 

  43. Ceglia L (2009) Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care 12(6):628–633. https://doi.org/10.1097/MCO.0b013e328331c707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wimalawansa SJ (2018) Non-musculoskeletal benefits of vitamin D. J Steroid Biochem Mol Biol 175:60–81. https://doi.org/10.1016/j.jsbmb.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  45. Boersma D, Demontiero O, Mohtasham Amiri Z, Hassan S, Suarez H, Geisinger D et al (2012) Vitamin D status in relation to postural stability in the elderly. J Nutr Health Aging 16(3):270–275

    Article  CAS  PubMed  Google Scholar 

  46. Annweiler C, Schott AM, Berrut G, Fantino B, Beauchet O (2009) Vitamin D‑related changes in physical performance: a systematic review. J Nutr Health Aging 13(10):893–898

    Article  CAS  PubMed  Google Scholar 

  47. Dupuy C, Lauwers-Cances V, van Kan GA, Gillette S, Schott AM, Beauchet O et al (2013) Dietary vitamin D intake and muscle mass in older women. Results from a cross-sectional analysis of the EPIDOS study. J Nutr Health Aging 17(2):119–124. https://doi.org/10.1007/s12603-012-0089-x

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Wang X, Gu Y, Liu M, Chi VTQ, Zhang Q et al (2019) Vitamin D is related to handgrip strength in adult men aged 50 years and over: a population study from the TCLSIH cohort study. Clin Endocrinol (Oxf) 90(5):753–765. https://doi.org/10.1111/cen.13952

    Article  CAS  Google Scholar 

  49. Robinson SM, Reginster JY, Rizzoli R, Shaw SC, Kanis JA, Bautmans I et al (2018) Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr 37(4):1121–1132. https://doi.org/10.1016/j.clnu.2017.08.016

    Article  CAS  PubMed  Google Scholar 

  50. Holch JW, Michl M, Heinemann V, Erickson N (2017) Vitamine und Spurenelemente in der Onkologie. Dtsch Med Wochenschr 142(12):896–902. https://doi.org/10.1055/s-0042-112046

    Article  PubMed  Google Scholar 

  51. Rondanelli M, Faliva M, Monteferrario F, Peroni G, Repaci E, Allieri F et al (2015) Novel insights on nutrient management of sarcopenia in elderly. Biomed Res Int 2015:524948. https://doi.org/10.1155/2015/524948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ et al (2011) Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 93(2):402–412. https://doi.org/10.3945/ajcn.110.005611

    Article  CAS  PubMed  Google Scholar 

  53. Cornish SM, Chilibeck PD (2009) Alpha-linolenic acid supplementation and resistance training in older adults. Applied physiology, nutrition, and metabolism. Appl Physiol Nutr Metab 34(1):49–59. https://doi.org/10.1139/h08-136

    Article  CAS  PubMed  Google Scholar 

  54. Logan SL, Spriet LL (2015) Omega-3 fatty acid supplementation for 12 weeks increases resting and exercise metabolic rate in healthy community-dwelling older females. PLoS ONE 10(12):e144828. https://doi.org/10.1371/journal.pone.0144828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fearon KC, Von Meyenfeldt MF, Moses AG, Van Geenen R, Roy A, Gouma DJ et al (2003) Effect of a protein and energy dense N‑3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 52(10):1479–1486. https://doi.org/10.1136/gut.52.10.1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bruera E, Strasser F, Palmer JL, Willey J, Calder K, Amyotte G et al (2003) Effect of fish oil on appetite and other symptoms in patients with advanced cancer and anorexia/cachexia: a double-blind, placebo-controlled study. J Clin Oncol 21(1):129–134. https://doi.org/10.1200/jco.2003.01.101

    Article  CAS  PubMed  Google Scholar 

  57. Di Girolamo FG, Situlin R, Mazzucco S, Valentini R, Toigo G, Biolo G (2014) Omega-3 fatty acids and protein metabolism: enhancement of anabolic interventions for sarcopenia. Curr Opin Clin Nutr Metab Care 17(2):145–150. https://doi.org/10.1097/mco.0000000000000032

    Article  PubMed  Google Scholar 

  58. Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O (2012) Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008465.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liedtke S, Schmidt ME, Becker S, Kaaks R, Zaineddin AK, Buck K et al (2011) Physical activity and endogenous sex hormones in postmenopausal women: to what extent are observed associations confounded or modified by BMI? Cancer Causes Control 22(1):81–89. https://doi.org/10.1007/s10552-010-9677-4

    Article  PubMed  Google Scholar 

  60. Fortunati N, Catalano MG, Boccuzzi G, Frairia R (2010) Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol 316(1):86–92. https://doi.org/10.1016/j.mce.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  61. Friedenreich CM, Wang Q, Neilson HK, Kopciuk KA, McGregor SE, Courneya KS (2016) Physical activity and survival after prostate cancer. Eur Urol 70(4):576–585. https://doi.org/10.1016/j.eururo.2015.12.032

    Article  PubMed  Google Scholar 

  62. Duregon F, Vendramin B, Bullo V, Gobbo S, Cugusi L, Di Blasio A et al (2018) Effects of exercise on cancer patients suffering chemotherapy-induced peripheral neuropathy undergoing treatment: A systematic review. Crit Rev Oncol Hematol 121:90–100. https://doi.org/10.1016/j.critrevonc.2017.11.002

    Article  PubMed  Google Scholar 

  63. Streckmann F, Kneis S, Leifert JA, Baumann FT, Kleber M, Ihorst G et al (2014) Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann Oncol 25(2):493–499. https://doi.org/10.1093/annonc/mdt568

    Article  CAS  PubMed  Google Scholar 

  64. Vollmers PL, Mundhenke C, Maass N, Bauerschlag D, Kratzenstein S, Rocken C et al (2018) Evaluation of the effects of sensorimotor exercise on physical and psychological parameters in breast cancer patients undergoing neurotoxic chemotherapy. J Cancer Res Clin Oncol 144(9):1785–1792. https://doi.org/10.1007/s00432-018-2686-5

    Article  PubMed  Google Scholar 

  65. Schmidt T, Berner J, Jonat W, Weisser B, Rocken C, van Mackelenbergh M et al (2017) Influence of arm crank ergometry on development of lymphedema in breast cancer patients after axillary dissection: a randomized controlled trail. J Rehabil Med 49(1):78–83. https://doi.org/10.2340/16501977-2167

    Article  PubMed  Google Scholar 

  66. Sheffield-Moore M, Yeckel CW, Volpi E, Wolf SE, Morio B, Chinkes DL et al (2004) Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol Endocrinol Metab 287(3):E513–E522. https://doi.org/10.1152/ajpendo.00334.2003

    Article  CAS  PubMed  Google Scholar 

  67. Charifi N, Kadi F, Feasson L, Denis C (2003) Effects of endurance training on satellite cell frequency in skeletal muscle of old men. Muscle Nerve 28(1):87–92. https://doi.org/10.1002/mus.10394

    Article  PubMed  Google Scholar 

  68. Lonbro S (2014) The effect of progressive resistance training on lean body mass in post-treatment cancer patients—a systematic review. Radiother Oncol 110(1):71–80. https://doi.org/10.1016/j.radonc.2013.07.008

    Article  PubMed  Google Scholar 

  69. Schmidt ME, Wiskemann J, Armbrust P, Schneeweiss A, Ulrich CM, Steindorf K (2015) Effects of resistance exercise on fatigue and quality of life in breast cancer patients undergoing adjuvant chemotherapy: A randomized controlled trial. Int J Cancer 137(2):471–480. https://doi.org/10.1002/ijc.29383

    Article  CAS  PubMed  Google Scholar 

  70. Schmidt T, Weisser B, Durkop J, Jonat W, Van Mackelenbergh M, Rocken C et al (2015) Comparing endurance and resistance training with standard care during chemotherapy for patients with primary breast cancer. Anticancer Res 35(10):5623–5629

    CAS  PubMed  Google Scholar 

  71. Stubblefield MD, Burstein HJ, Burton AW, Custodio CM, Deng GE, Ho M et al (2009) NCCN task force report: management of neuropathy in cancer. J Natl Compr Canc Netw 7(Suppl 5):S1–S26 (quiz S7–8)

    Article  PubMed  Google Scholar 

  72. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43(6):748–759. https://doi.org/10.1093/ageing/afu115

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Tonya Erickson M.Sc., RD.

Ethics declarations

Interessenkonflikt

N.T. Erickson gibt an, dass keine finanziellen oder persönlichen Beziehungen zu Dritten bestehen, deren Interessen von diesem Manuskript positiv oder negativ betroffen sein könnten. Sie hat Honorare von u. a. B.Braun, Fresenius, CSL Behring, Hipp GmbH, GHD Gmbh erhalten. C. Reudelstertz arbeitet als freiberufliche Dipl. Oecotrophologin im Bereich medizinisch wissenschaftliche Beratungsleistungen u. a. für Fresenius Kabi und BBraun. J.W. Holch hat medizinisch wissenschaftliche Beratungsleistungen für Roche erhalten und Reisekostenerstattung von Novartis. L. Liu, L.-S. Marquort und T. Schmidt geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

In Zusammenarbeit mit der AG Prävention und integrativen Onkologie (AG PRIO), Deutschen Krebsgesellschaft, Berlin

Lian Liu, Nicole Tonya Erickson: geteilte Erstautoren

Julian W. Holch: Letztautor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Erickson, N.T., Marquort, LS. et al. Sarkopenie − Diagnostik und mögliche Therapien. Onkologe 25, 819–826 (2019). https://doi.org/10.1007/s00761-019-0614-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-019-0614-1

Schlüsselwörter

Keywords

Navigation