Log in

Dynamics of the HP1 Hinge Region with DNA Measured by Site-Directed Spin Labeling-EPR Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An epigenetic reader, heterochromatin protein 1 (HP1), possesses two conserved domains, the chromoshadow domain (CSD) and chromodomain (CD). The CD and CSD are connected by the hinge region (HR). N, C-tails and HR are estimated to be disordered. In 50% glycerol, EPR spectra from side-chain spin labels of the disordered regions were resolved into two motional fractions or nanoseconds to slower timescales; however, the fraction of slower dynamics was labeled to be site-specific. The slow fraction of the HR (middle region) was abolished by monomer mutation and reduced by N-tail truncation in the dimer state. Within the HR, by truncation of the C-tail, the slow fraction of dynamics of the C-terminal region in the HR were reduced. In addition, the slow fraction of dynamics of the basal region in the C-tail, but not the C-tail end, was significantly reduced by truncating the N-tail-CD-HR. Together, the middle region of the HR was loosely organized by direct or indirect interaction with the N-tail, exerted from one monomer to the other, and the C-terminal region in the HR contacted the C-tail within a monomer in an autoinhibited state, as presumably proposed. Surprisingly, DNA did not affect the spectra, irrespective of glycerol addition, while it clearly restricted the CD and the CSD in HP1α, one of three paralogs. In contrast, DNA did not show a significant effect on the dynamics of all regions examined in another paralog HP1γ. We propose that HP1α undergoes very rapid diffusion due to sliding as a fuzzy complex of the HR and that CD and CSD are tethered with similar dynamics around DNA, which is in agreement with reported molecular dynamics simulations [Watanabe et al., Biophys. J. 114: 2336–2352, 2018].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary Materials.

References

  1. G.K. Dialynas, M.W. Vitalini, L.L. Wallrath, Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutat. Res. 647, 13–20 (2008). https://doi.org/10.1016/j.mrfmmm.2008.09.007

    Article  Google Scholar 

  2. L.J. Ball, N.V. Murzina, R.W. Broadhurst, A.R. Raine, S.J. Archer, F.J. Stott, A.G. Murzin, P.B. Singh, P.J. Domaille, E.D. Laue, Structure of the chromatin binding (chromo) domain from mouse modifier protein 1. EMBO J. 16, 2473–2481 (1997). https://doi.org/10.1093/emboj/16.9.2473

    Article  Google Scholar 

  3. D. Canzio, A. Larson, G.J. Narlikar, Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol. 24, 377–386 (2014). https://doi.org/10.1016/j.tcb.2014.01.002

    Article  Google Scholar 

  4. G. Nishibuchi, J. Nakayama, Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem. 156, 11–20 (2014). https://doi.org/10.1093/jb/mvu032

    Article  Google Scholar 

  5. A.J. Bannister, P. Zegerman, J.F. Partridge, E.A. Miska, J.O. Thomas, R.C. Allshire, T. Kouzarides, Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001). https://doi.org/10.1038/35065138

    Article  ADS  Google Scholar 

  6. S.A. Jacobs, S. Khorasanizadeh, Structure of HP1 Chromodomain Bound to a Lysine 9-Methylated Histone H3 Tail. Science 295, 2080–2083 (2002). https://doi.org/10.1126/science.1069473

    Article  ADS  Google Scholar 

  7. P.R. Nielsen, D. Nietlispach, H.R. Mott, J. Callaghan, A. Bannister, T. Kouzarides, A.G. Murzin, N.V. Murzina, E.D. Laue, Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107 (2002). https://doi.org/10.1038/nature722

    Article  ADS  Google Scholar 

  8. S.V. Brasher, B.O. Smith, R.H. Fogh, D. Nietlispach, A. Thiru, P.R. Nielsen, R.W. Broadhurst, L.J. Ball, N.V. Murzina, E.D. Laue, The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J. 19, 1587–1597 (2000). https://doi.org/10.1093/emboj/19.7.1587

    Article  Google Scholar 

  9. N. P. Cowieson, J. F. Partridge, R. C. Allshire, P. J. Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. McLaughlin Curr. Biol. 10, 517–525 (2000). https://doi.org/10.1016/s0960-9822(00)00467-x

  10. D.O. Jones, I.G. Cowell, P.B. Singh, Mammalian chromodomain proteins: their role in genome organisation and expression. BioEssays 22, 124–137 (2000). https://doi.org/10.1002/(SICI)1521-1878(200002)22:2%3c124::AID-BIES4%3e3.0.CO;2-E

    Article  Google Scholar 

  11. A.M. Azzaz, M.W. Vitalini, A.S. Thomas, J.P. Price, M.J. Blacketer, D.E. Cryderman, L.N. Zirbel, C.L. Woodcock, A.H. Elcock, L.L. Wallrath, M.A. Shogren-Knaak, Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation. J. Biol. Chem 289, 6850–6861 (2014). https://doi.org/10.1074/jbc.M113.512137

    Article  Google Scholar 

  12. Y. Mishima, M. Watanabe, T. Kawakami, C.D. Jayasinghe, J. Otani, Y. Kikugawa, M. Shirakawa, H. Kimura, O. Nishimura, S. Aimoto, S. Tajima, Isao Suetake, Hinge and chromoshadow of HP1α participate in recognition of K9 methylated histone H3 in nucleosomes. J. Mol. Biol. 425, 54–70 (2013). https://doi.org/10.1016/j.jmb.2012.10.018

    Article  Google Scholar 

  13. Y. Mishima, C.D. Jayasinghe, K. Lu, J. Otani, M. Shirakawa, T. Kawakami, H. Kimura, H. Hojo, P. Carlton, S. Tajima, I. Suetake, Nucleosome compaction facilitates HP1γ binding to methylated H3K9. Nucl. Acids Res. 43, 10200–10212 (2015). https://doi.org/10.1093/nar/gkv841

    Article  Google Scholar 

  14. G. Nishibuchi, S. Machida, A. Osakabe, H. Murakoshi, K. Hiragami-Hamada, R. Nakagawa, W. Fischle, Y. Nishimura, H. Kurumizaka, H. Tagami, J. Nakayama, N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity. Nucl. Acids Res. 42, 12498–12511 (2014). https://doi.org/10.1093/nar/gku995

    Article  Google Scholar 

  15. R.R. Meehan, C. Kao, S. Pennings, HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J. 22, 3164–3174 (2003). https://doi.org/10.1093/emboj/cdg306

    Article  Google Scholar 

  16. C. Muchardt, M. Guilleme, J. Seeler, D. Trouche, A. Dejean, M. Yaniv, Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep. 3, 975–981 (2002). https://doi.org/10.1093/embo-reports/kvf194

    Article  Google Scholar 

  17. F. Munari, S. Soeroes, H. M. Zenn, A. Schomburg, N. Kost, S. Schröder, R. Klingberg, N. Rezaei-Ghaleh, A. Stützer, K. A. Gelato, P. Jomo Walla, S. Becker, D. Schwarzer, B. Zimmermann, W. Fischle, M. Zweckstetter, Methylation of lysine 9 in histone H3 directs alternative modes of highly dynamic interaction of heterochromatin protein hHP1β with the nucleosome. J. Biol. Chem. 287, 33756–33765 (2012). https://doi.org/10.1074/jbc.M112.390849

  18. S. Watanabe, Y. Mishima, M. Shimizu, I. Suetake, S. Takada, Interactions of HP1 Bound to H3K9me3 Dinucleosome by Molecular Simulations and Biochemical Assays. Biophys. J. 114, 2336–2351 (2018). https://doi.org/10.1016/j.bpj.2018.03.025

    Article  ADS  Google Scholar 

  19. F. Munari, N. Rezaei-Ghaleh, S. **ang, W. Fischle, M. Zweckstetter, Structural plasticity in human heterochromatin protein 1β. PLoS ONE 8, e60887 (2013). https://doi.org/10.1371/journal.pone.0060887

    Article  ADS  Google Scholar 

  20. H. Shimojo, A. Kawaguchi, T. Oda, N. Hashiguchi, S. Omori, K. Moritsugu, A. Kidera, K. Hiragami-Hamada, J. Nakayama, M. Sato, Y. Nishimura, Extended string-like binding of the phosphorylated HP1α N-terminal tail to the lysine 9-methylated histone H3 tail. Sci. Rep. 6, 22527 (2016). https://doi.org/10.1038/srep22527

    Article  ADS  Google Scholar 

  21. D. Canzio, M. Liao, N. Naber, E. Pate, A. Larson, S. Wu, D.B. Marina, J.F. Garcia, H.D. Madhani, R. Cooke, P. Schuck, Y. Cheng, G.J. Narlikar, A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 496, 377–381 (2013). https://doi.org/10.1038/nature12032

    Article  ADS  Google Scholar 

  22. I. Suetake, S. Nakazawa, K. Sato, R. Mutoh, Y. Mishima, T. Kawakami, T. Takei, M. Watanabe, N. Sakai,T. Fujiwara, T. Takui, M. Miyata, A. Shinohara, H. Hojo, T. Arata, Structural dynamics of the chromo-shadow domain and chromodomain of HP1 bound to histone H3K9 methylated peptide, as measured by site-directed spin-labeling EPR spectroscopy. Biochem. Biophys. Res, Commun. 567, 42–48 (2021). https://doi.org/10.1016/j.bbrc.2021.06.010

  23. H. Takeshima, I. Suetake, H. Shimahara, K. Ura, S. Tate, S. Tajima, Distinct DNA methylation activity of Dnmt3a and Dnmt3b towards naked and nucleosomal DNA. J. Biochem. 139, 503–515 (2006). https://doi.org/10.1093/jb/mvj044

    Article  Google Scholar 

  24. S. Ueki, M. Nakamura, T. Komori, T. Arata, Site-directed spin labeling electron paramagnetic resonance study of the calcium-induced structural transition in the N-domain of human cardiac troponin C complexed with troponin I. Biochemistry 44, 411–416 (2005). https://doi.org/10.1021/bi048110w

    Article  Google Scholar 

  25. M. Nakamura, S. Ueki, H. Hara, T. Arata, Calcium structural transition of human cardiac troponin C in reconstituted muscle fibres as studied by site-directed spin labelling. J. Mol. Biol. 348, 127–137 (2005). https://doi.org/10.1016/j.jmb.2005.02.018

    Article  Google Scholar 

  26. T. Aihara, S. Ueki, M. Nakamura, T. Arata, Calcium-dependent movement of troponin I between troponin C and actin as revealed by spin-labeling EPR. Biochem. Biophys. Res. Commun. 340, 462–468 (2006). https://doi.org/10.1016/j.bbrc.2005.12.030

    Article  Google Scholar 

  27. K. Ueda, C. Kimura-Sakiyama, T. Aihara, M. Miki, T. Arata, Interaction Sites of Tropomyosin in Muscle Thin Filament as Identified by Site-Directed Spin-Labeling. Biophys. J. 100, 2432–2439 (2011). https://doi.org/10.1016/j.bpj.2011.03.021

    Article  ADS  Google Scholar 

  28. K. Sugata, L. Song, M. Nakamura, S. Ueki, P.G. Fajer, T. Arata, Nucleotide-induced flexibility change in neck linkers of Dimeric kinesin as detected by distance measurements using spin-labeling EPR. J. Mol. Biol. 38, 626–636 (2009). https://doi.org/10.1016/j.jmb.2008.12.079

    Article  Google Scholar 

  29. T. Aihara, M. Nakamura, S. Ueki, H. Hara, M. Miki, T. Arata, Switch action of troponin on muscle thin filament as revealed by spin labeling and pulsed EPR. J. Biol. Chem. 285, 10671–10677 (2010). https://doi.org/10.1074/jbc.M109.082925

    Article  Google Scholar 

  30. S. Yasuda, Y. Yanagi, M.D. Yamada, S. Ueki, S. Maruta, A. Inoue, T. Arata, Nucleotide-dependent displacement and dynamics of the α-1 helix in kinesin revealed by site-directed spin labeling EPR. Biochem. Biophys. Res. Commun. 443, 911–916 (2014). https://doi.org/10.1016/j.bbrc.2013.12.063

    Article  Google Scholar 

  31. K. Ishii, S. Terauchi, R. Murakami, J.V. Swain, R. Mutoh, K. Maki, T. Arata, M. Ishiura, Site-directed spin labeling-electron spin resonance map** of the residues of cyanobacterial clock protein KaiA that are affected by KaiA–KaiC interaction. Genes Cells 19, 297–324 (2014). https://doi.org/10.1111/gtc.12130

    Article  Google Scholar 

  32. C. Zhao, T. Somiya, S. Takai, S. Ueki, T. Arata, Structural Dynamics of the N-Extension of Cardiac Troponin I Complexed with Troponin C by Site-Directed Spin Labeling Electron Paramagnetic Resonance. Sci. Rep. 9, 15259 (2019). https://doi.org/10.1038/s41598-019-51740-6

    Article  ADS  Google Scholar 

  33. J. Abe, S. Ueki, S. Yamauchi, T. Arata, Y. Ohba, Double Quantum Coherence EPR Reveals the Structure-Function Relationships of the Cardiac Troponin C-Troponin I Complex Regulated by Ca2+ Ions and a Phosphomimetic. Appl. Magn. Reson. 49, 893–910 (2018). https://doi.org/10.1007/s00723-018-1031-0

    Article  Google Scholar 

  34. T. Arata, Myosin and Other Energy-Transducing ATPases: Structural Dynamics Studied by Electron Paramagnetic Resonance. Int. J. Mol. Sci. 21, 672 (2020). https://doi.org/10.3390/ijms21020672

    Article  Google Scholar 

  35. A.G. Redfield, The Theory of Relaxation Processes. Adv. Magn. Reson. 1, 1–35 (1965)

    Article  Google Scholar 

  36. D. Marsh, in Spin Labeling Theory and Applications, eds. L.J. Berliner, J. Reuben, Plenum Press, New York, 255–303 (1989)

    Chapter  Google Scholar 

  37. V.A. Barnett, D.D. Thomas, Resolution of Conformational States of Spin-Labeled Myosin during Steady-State ATP Hydrolysis. Biochemistry 26, 314–323 (1987). https://doi.org/10.1021/bi00375a044

    Article  Google Scholar 

  38. S. V. Brasher, B. O. Smith, R. H. Fogh, D. Nietlispach, A. Thiru, P. R. Nielsen, R. W. Broadhurst, L. J. Ball, N, V. Murzina, E. D. Laue, The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J. 19, 1 587–1597 (2000). https://doi.org/10.1093/emboj/19.7.1587

  39. A.G. Larson, D. Elnatan, M.M. Keenen, M.J. Trnka, J.B. Johnston, A.L. Burlingame, D.A. Agard, S. Redding, G.J. Narlikar, Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017). https://doi.org/10.1038/nature22822

    Article  ADS  Google Scholar 

  40. N.Y. Sidorova, S. Hung, D.C. Rau, Stabilizing labile DNA–protein complexes in polyacrylamide gels. Electrophoresis 31, 648–653 (2010). https://doi.org/10.1002/elps.200900573

    Article  Google Scholar 

  41. H. He, R. Pires, T. Zhu, A. Zhou, A.K. Gaigalas, S. Zou, L. Wang, S. Zou, Fluorescence resonance energy transfer-based method for detection of DNA binding activities on nuclear factor κB. Biotechniques 43, 93–98 (2007). https://doi.org/10.2144/000112475

    Article  Google Scholar 

  42. M. Jacob, T. Schindler, J. Balbach, F.X. Schmid, Diffusion control in an elementary protein folding reaction. Proc Natl Acad Sci U S A. 94, 5622–5627 (1997). https://doi.org/10.1073/pnas.94.11.5622

    Article  ADS  Google Scholar 

  43. L. Pradee, J.B. Udgaonkar, Diffusional barrier in the unfolding of a small protein. J. Mol. Biol. 366, 1016–1028 (2007). https://doi.org/10.1016/j.jmb.2006.11.064

    Article  Google Scholar 

  44. M.M. Keenen, D. Brown, L.D. Brennan, R. Renger, H. Khoo, C.R. Carlson, B. Huang, S.W. Grill, G.J. Narlikar, S. Redding, HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. Elife 10, e64563 (2021). https://doi.org/10.7554/eLife.64563

    Article  Google Scholar 

  45. M. Fuxreiter, P. Tompa, Fuzzy Complexes: A More Stochastic View of Protein Function, In: M. Fuxreiter, P Tompa. (eds.) Fuzziness. Advances in Experimental Medicine and Biology, vol. 725. Springer, New York, NY https://doi.org/10.1007/978-1-4614-0659-4_1

  46. R. Badugu, Y. Yoo, P.B. Singh, R. Kellum, Mutations in the heterochromatin protein 1 (HP1) hinge domain affect HP1 protein interactions and chromosomal distribution. Chromosoma 113, 370–384 (2005). https://doi.org/10.1007/s00412-004-0324-2

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP22K06174(IS), JP18K06095(IS), and the promotion and Mutual Aid Corporation for Private Schools of Japan (PMAC) (IS). IS and TA are grateful to the Collaborative Research Program of the Institute for Protein Research, Osaka University, VFCR-18–03, 19–03, CR-18–02, 19–02, 20–01, 21–01, and 21–02.

Author information

Authors and Affiliations

Authors

Contributions

T.A. and I.S. conceived and supervised the study; T.A. and I.S. designed the experiments; T.A., K.S., and I.S. performed the EPR experiments; T.S. performed phase-contrast microscopy; Y.M., A.S., R.M. and I.S. prepared recombinant proteins; H.H. and To.T. performed structural analysis; Y.M., T.A. and I.S. synthesized the DNA and performed the gel-shift assay; T.A., R.M. and I.S. wrote the manuscript. M.M., Ta.T., T.F., and A.S. contributed to the critical discussion.

Corresponding authors

Correspondence to Isao Suetake or Toshiaki Arata.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors declare that they consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2916 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suetake, I., Sato, K., Sugishita, T. et al. Dynamics of the HP1 Hinge Region with DNA Measured by Site-Directed Spin Labeling-EPR Spectroscopy. Appl Magn Reson 54, 119–141 (2023). https://doi.org/10.1007/s00723-022-01519-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01519-2

Navigation