Log in

Low-pressure isobaric cooling metamorphic P–T paths from Botnnuten in the southern Lützow-Holm Complex, East Antarctica

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This paper reports the metamorphic texture of cordierite megacrysts and the metamorphic P–T path of a newly exposed section of gneiss in East Antarctica. We used mineral textures and pseudosection modeling to reconstruct the metamorphic P–T path of cordierite- and spinelgarnet-bearing gneisses from Botnnuten, an isolated nunatak located ~ 60 km from the southern edge of Lützow-Holm Bay in East Antarctica. The gneisses underwent low-P granulite-facies metamorphism at 5.0–6.1 kbar and 850 ± 20 °C followed by isobaric cooling. The isobaric cooling path implies long residence in the middle to shallow crustal level without rapid exhumation. This contrasts with the widely recognized clockwise P–T path of basement rocks of the Lützow-Holm Complex. The rocks at Botnnuten have long been considered part of the Lützow-Holm Complex based on their petrographical features and geothermobarometric data. However, the present results, combined with a reevaluation of available data, indicate the metamorphic history of the Botnnuten gneisses is more comparable to that of the Yamato Mountains, located southwest of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data presented in the text of the article are fully available without restriction from authors upon request.

References

  • Asami M, Shiraishi K (1985) Retrograde metamorphism in the Yamato Mountains, East Antarctica. Memoires Natl Inst Polar Res Spec Issue 37:147–163

    Google Scholar 

  • Baba S, Osanai Y, Nakano N, Owada M, Hokada T, Horie K, Adachi T, Toyoshima T (2013) Counterclockwise P–T path and isobaric cooling of metapelites from Brattnipene, Sør Rondane Mountains, East Antarctica: Implications for a tectonothermal event at the proto-Gondwana margin. Precambrian Res 234:210–228

    Article  CAS  Google Scholar 

  • Baba S, Osanai Y, Adachi T, Nakano N, Hokada T, Toyoshima T (2019) Metamorphic P–T conditions and variation of REE between two garnet generations from granulites in the Sør-Rondane mountains, East Antarctica. Mineral Petrol 113:821–845

    Article  CAS  Google Scholar 

  • Baba S, Hokada T, Kamei A, Kitano I, Motoyoshi Y, Nantasin P, Setiawan NI, Dashbaatar D (2021) Tectono-metamorphic evolution and significance of shear-zone lithologies in Akebono Rock. Lützow-Holm Complex East Antarctica Antarctic Sci 33:52–72

    Article  Google Scholar 

  • Baba S, Horie K, Hokada T, Takehara M, Kamei A, Kitano I, Motoyoshi Y, Nantasin P, Setiawan NI, Dashbaatar D (2022) Newly found Tonian metamorphism in Akebono Rock, eastern Dronning Maud Land, East Antarctica. Gondwana Res 105:243–261

    Article  CAS  Google Scholar 

  • Baba S, Nantasin P, Kamei A, Kitano I, Motoyoshi Y, Setiawan NI, Dashbaatar D, Hokada T (2023) Counter–clockwise P–T history deduced from kyanite–bearing pelitic gneiss in Tenmondai Rock, Lützow-Holm Complex. East Antarctica J Mineral Petrol Sci 118:S001

    CAS  Google Scholar 

  • Boger SD, White RW (2003) The metamorphic evolution of metapelitic granulites from Radok Lake, northern Prince Charles Mountains, east Antarctica; evidence for an anticlockwise P–T path. J Metamorph Geol 21:285–298

    Article  CAS  Google Scholar 

  • Boger SD, White RW, Schulte B (2012) The importance of iron speciation (Fe+2 ⁄ Fe+3) in determining mineral assemblages: an example from the high-grade aluminous metapelites of southeastern Madagascar. J Metamorph Geol 30:997–1018

    Article  CAS  Google Scholar 

  • Boger SD, Hirdes W, Ferreira CAM, Jenett T, Dallwig R, Fanning CM (2015) The 580–520 Ma Gondwna suture of Madagascar and its continuation into Antartica and Africa. Gondwana Res 28:1048–1060

    Article  CAS  Google Scholar 

  • Bohlen SR (1987) Pressure-temperature-time paths and a tectonic model for the evolution of granulites. J Geol 95:617–632

    Article  CAS  Google Scholar 

  • Bohlen SR (1991) On the formation of granulites. J Metamorph Geol 9:223–229

    Article  CAS  Google Scholar 

  • Brown M (1993) P–T–t evolution of orogenic belts and the causes of regional metamorphism. J Geol Soc London 150:227–241

    Article  Google Scholar 

  • Brown M (2007) Metamorphic conditions in orogenic belts: a record of secular change. Int Geol Rev 49:193–234

    Article  Google Scholar 

  • Brown M, Johnson T (2019) Time’s arrow, time’s cycle: Granulite metamorphism and geodynamics. Mineral Mag 83:323–338

    Article  CAS  Google Scholar 

  • Clarke GL, Powell R, Guiraud M (1989) Low-pressure granulite facies metapelitic assemblages and corona textures from MacRobertson land, east Antarctica: the importance of Fe2O3and TiO2 in accounting for spinel-bearing assemblages. J Metamorph Geol 7:323–335

    Article  CAS  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  CAS  Google Scholar 

  • Dasgupta S, Pal S (2001) Origin of grandite garnet in calc-silicate granulites: mineral–fluid equilibria and petrogenetic grids. J Petrol 46:1045–1076

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Longman Scientific and Technical, New York, Essex, p 696

    Google Scholar 

  • Dunkley D, Hokada T, Shiraishi K, Hiroi Y, Nogi Y, Motoyoshi Y (2020) Geological subdivision of the Lützow-Holm Complex in East Antarctica: From the Neoarchean to the Neoproterozoic. Polar Sci 26:100606

    Article  Google Scholar 

  • Dunkley DJ, Shiraishi K, Motoyoshi Y, Tsunogae T, Miyamoto T, Hiroi Y, Carson CJ (2014) Deconstructing the Lützow-Holm Complex with zircon geochronology. Abstr of 7th Int SHRIMP workshop program, pp 116–121

  • Durgalakshmi SK, Williams IS, Reddy DH, Satishi-Kumar M, Jons N, Malaviarachchi SPK, Samuel VO, George PM (2021) The timing, duration and conditions of UTH metamorphism in remnants of the former eastern Gondwana. J Petrol 62:1–38

    Article  CAS  Google Scholar 

  • England PC, Thompson AB (1984) Pressure Temperature time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928

    Article  Google Scholar 

  • Fitzsimons ICW (2000) Grenville-age basement provinces in East Antarctica: evidence for three separate collisional orogens. Geology 28:879–882

    Article  CAS  Google Scholar 

  • Fitzsimons ICW, Harley SL (1994) Garnet coronas in scapolite-wollastonite calc-silicates from East Antarctica: the application and limitations of activity-corrected grids. J Metamorph Geol 6:761–777

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-Feldspar Modelling and Thermometry Am Mineral 73:201–215

    CAS  Google Scholar 

  • Halpin JA, Clarke GL, White RW, Kelsey DE (2007) Contrasting P–T–t paths for Neoproterozoic metamorphism in MacRobertson and Kemp Lands, East Antarctica. J Metamorph Geol 25:683–701

    Article  CAS  Google Scholar 

  • Harley SL (1989) The origins of granulites: a metamorphic perspective. Geol Mag 126:215–247

    Article  CAS  Google Scholar 

  • Hiroi Y, Shiraishi K, Motoyoshi Y (1991) Late Proterozoic paired metamorphic complexes in East Antarctica, with special reference to the tectonic significance of ultramafic rocks. In: Thomson MRA, Crame JA, Thomson JW (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge, pp 83–87

    Google Scholar 

  • Hiroi Y, Hokada T, Kato M, Yanagi A, Adachi T, Osanai Y, Motoyoshi Y, Shiraishi K (2019) Felsite–nanogranite inclusions and three Al2SiO5 polymorphs in the same garnet in ultrahigh–temperature granulites from Rundvågshetta, Lützow-Holm Complex, East Antarctica. J Mineral Petrol Sci 114:60–78

    Article  CAS  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  CAS  Google Scholar 

  • Holland TJB, Green ECR, Powell R (2018) Melting of Peridotites through to Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr. J Petrol 59:881–900

    Article  CAS  Google Scholar 

  • Ishikawa M, Motoyoshi Y, Fraser GL, Kawasaki T (1994) Structural evolution of Rundvågshetta region, Lützow-Holm bay, East Antarctica. Proc NIPR Symp Antarctic Geosci 7:69–89

    Google Scholar 

  • Iwamura S, Tsunogae T, Kato M, Koizumi T, Dunkley D (2013) Petrology and phase equilibrium modeling of spinel-sapphirine- bearing mafic granulite from Akarui Point, Lützow-Holm Complex, East Antarctica: Implications for the P–T path. J Mineral Petrol Sci 108:345–350

    Article  CAS  Google Scholar 

  • Jacobs J, Thomas RJ (2004) Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic-early Paleozoic East African-Antarctic orogeny. Geology 32:721–724

    Article  Google Scholar 

  • Jacobs J, Elburg M, Läufer A, Kleinhanns IC, Henjes-Kunst F, Estrada S, Ruppel A, Damaske D, Montero P, Bea F (2015) Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronnning Maud Land, East Antarctica: the missing link, 15–21°E. Precambrian Res 265:249–272

    Article  CAS  Google Scholar 

  • Jiao S, Brown M, Mitchell RN, Chowdhury P, Clark C, Chen L, Chen Y, Korhonen F, Huang G, Guo J (2023) Mechanism to generate ultrahigh-temperature metamorphism. Nature Rev Earth and Environ 4:298–318

    Article  CAS  Google Scholar 

  • Kawakami T, Hokada T, Sakata S, Hirata T (2016) Possible polymetamorphism and brine infiltration recorded in the garnet–sillimanite gneiss, Skallevikshalsen, Lützow-Holm Complex, East Antarctica. J Mineral Petrol Sci 111:129–143

    Article  CAS  Google Scholar 

  • Kawasaki T, Nakano N, Osanai Y (2011) Osumilite and a spinel+quartz association in garnet–sillimanite gneiss from Rundvågshetta, Lützow-Holm Complex, East Antarctica. Gondwana Res 19:430–445

    Article  CAS  Google Scholar 

  • Kelsey DE, Hand M (2015) On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Front 6:311–356

    Article  CAS  Google Scholar 

  • Kimura J, Yamada Y (1996) Evaluation of major and trace element XRF analyses using a flux to sample ratio of two to one glass beads. J Mineral Petrol Econ Geol 91:62–72

    Article  CAS  Google Scholar 

  • Kitano I, Hokada T, Baba S, Kamei A, Motoyoshi Y, Nantasin P, Setiawan NI, Dashbaatar D, Toyoshima T, Ishikawa M, Katori T, Nakano N, Osanai Y (2023) Zircon geochronology of high–grade metamorphic rocks from outcrops along the Prince Olav Coast, East Antarctica: Implications for multi–thermal events and regional correlations. J Mineral Petrol Sci 118:S009

    Article  CAS  Google Scholar 

  • Meert J (2003) A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362:1–40

    Article  Google Scholar 

  • Morrissey L, Hand M, Kelsey DE (2015) Multi-stage metamorphism in the Rayner-Eastern Ghats Terrane: P–T–t constraints from the northern Prince Charles Mountains, east Antarctica. Precambrian Res 267:137–169

    Article  CAS  Google Scholar 

  • Motoyoshi Y, Ishikawa M (1997) Metamorphic and structural evolution on granulites from Rundvagshetta, Lützow-Holm Bay, East Antarctica. In: Ricci CA (ed) The Antarctic Region: Geological Evolution and Processes. Terra Antarctica Publication, Siena, Italy, pp 65–72

    Google Scholar 

  • Motoyoshi Y, Shiraishi K (1985) Petrography and geothermometry-geobarometry of Botnnuten, East Antarctica. Memoires Natl Inst Polar Res Spec Issue 37:127–146

    Google Scholar 

  • Osanai Y, Nogi Y, Baba S, Nakano N, Adachi T, Hokada T, Toyoshima T, Owada M, Satish-Kumar M, Kamei A, Kitano I (2013) Geologic evolution of the Sør Rondane Mountains, East Antarctica: collision tectonics proposed based on metamorphic processes and magnetic anomalies. Precambrian Res 234:8–29

    Article  CAS  Google Scholar 

  • Osanai Y, Sajeev K, Nakano N, Kitano I, Kehelpannala WKV, Kato R, Adachi T, Malaviarachchi SPK (2016) UHT granulites of the Highland Complex, Sri Lanka II: Geochronological constraints and implications for Gondwana correlation. J Mineral Petrol Sci 111:157–169

    Article  CAS  Google Scholar 

  • Palin RM, Weller OM, Waters DJ, Dyck B (2016) Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci Front 7:591–607

    Article  Google Scholar 

  • Ruppel A, Jacobs J, Eagles G, Läufer A, Jokat W (2018) New geophysical data from a key region in East Antarctica: estimates for the spatial extent of the Tonian Oceanic Arc Super Terrane (TOAST). Gondwana Res 59:97–107

    Article  Google Scholar 

  • Sandiford M, Powell R (1986) Deep crustal metamorphism during continental extension: modern and ancient examples. Earth Planet Sci Lett 79:151–158

    Article  Google Scholar 

  • Santoshi M, Yoshida M (1992) A petrologic and fluid inclusion study of charnockites from the Liitzow-Holm Bay region, East Antarctica: Evidence for fluid- rich metamorphism in the lower crust. Lithos 29:107–126

    Article  Google Scholar 

  • Shiraishi K, Ellis DJ, Hiroi Y, Fanning CM, Motoyoshi Y, Nakai Y (1994) Cambrian orogenic belt in east Antarctica and Sri Lanka: implications for Gondwana assembly. J Geol 102:47–65

    Article  CAS  Google Scholar 

  • Shiraishi K, Ellis DJ, Fanning CM, Hiroi Y, Kagami H, Motoyoshi Y (1997) Reexamination of the metamorphic and protolith ages of the Rayner complex, Antarctica: Evidence for the Cambrian (Pan-African) regional metamorphic event. In: Ricci CA (ed) The Antarctic Region: Geological Evolution and Processes. Terra Antartica Publication, Siena, Italy, pp 79–88

    Google Scholar 

  • Shiraishi K, Hokada T, Fanning CM, Misawa K, Motoyoshi Y (2003) Timing of thermal events in eastern Dronning Maud Land, East Antarctica. Polar Geosci 16:76–99

    Google Scholar 

  • Shiraishi K, Dunkley DJ, Hokada T, Fanning CM, Kagami H, Hamamoto T (2008) Geochronological constraints on the Late Proterozoic to Cambrian crustal evolution of eastern Dronning Maud Land, East Antarctica: a synthesis of SHRIMP U-Pb age and Nd model age data. Geol Soc London Spec Publ 308:21–67

    Article  Google Scholar 

  • Shiraishi K, Hiroi Y, Motoyoshi Y (1989) Antarctic Geological Map Series, Sheet 12 Prince Olav Coast. NIPR, Tokyo

    Google Scholar 

  • Sizova E, Gerya T, Brown M (2014) Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Res 25:522–545

    Article  Google Scholar 

  • Stephenson NCN (1977) Coexisting hornblendes and biotites from Precambrian gneiss of the south coast of Western Australia. Lithos 10:9–27

    Article  CAS  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351

    Article  Google Scholar 

  • Suzuki K, Kawakami T (2019) Metamorphic pressure–temperature conditions of the Lützow-Holm Complex of East Antarctica deduced from Zr–in–rutile geothermometer and Al2SiO5 minerals enclosed in garnet. J Mineral Petrol Sci 114:267–279

    Article  CAS  Google Scholar 

  • Takahashi K, Tsunogae T (2017) Carbonic fluid inclusions in a garnet–pyroxene granulite from Austhovde in the Lützow-Holm Complex, East Antarctica: Implications for a decompressional P–T path. J Mineral Petrol Sci 112:132–137

    Article  CAS  Google Scholar 

  • Takahashi K, Tsunogae T, Santoshi M, Takamura Y (2018) Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: Implications for crustal growth and terrane assembly in erstwhile Gondwana fragments. J Asian Earth Sci 157:245–265

    Article  Google Scholar 

  • Takamura Y, Tsunogae T, Santosh M, Tsutsumi Y (2018) Detrital zircon geochronology of the Lützow-Holm Complex, East Antarctica: Implications for Antarctica-Sri Lanka correlation. Geosci Front 9:355–375

    Article  CAS  Google Scholar 

  • Takamura Y, Tsunogae T, Tsutsumi Y (2020) U-Pb geochronology and REE geochemistry of zircons in mafic granulites from the Lützow-Holm complex, East Antarctica: Implications for the timing and P–T path of post-peak exhumation and Antarctica-Sri Lanka correlation. Precambrian Res 348:105850

    Article  CAS  Google Scholar 

  • Thompson AB, England PC (1984) Pressure Temperature time paths of regional metamorphism II. Their inference and I terpretation using mineral assemblage in metamorohic rocks. J Petrol 25:929–955

    Article  CAS  Google Scholar 

  • Tsunogae T, Dunkley DJ, Horie K, Endo T, Miyamoto T, Kato M (2014) Petrology and SHRIMP zircon geochronology of granulites from Vesleknausen, Lützow-Holm Complex, East Antarctica: Neoarchean magmatism and Neoproterozoic high–grade metamorphism. Geosci Front 5:167–182

    Article  CAS  Google Scholar 

  • Tsunogae T, Yang QY, Santosh M (2015) Early Neoproterozoic arc magmatism in the Lützow-Holm Complex, East Antarctica: Petrology, geochemistry, zircon U-Pb geochronology and Lu–Hf isotopes and tectonic implications. Precambrian Res 266:467–489

    Article  CAS  Google Scholar 

  • Wells PRA (1980) Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth Planet Sci Lett 46:253–265

    Article  Google Scholar 

  • Wen S, Nekvasil H (1994) Solvcalc: an interactive graphics program package for calculating the ternary feldspar solvus and for two- feldspar geothermometry. Comput Geosci 20:1025–1040

    Article  CAS  Google Scholar 

  • Wheller CJ, Powell R (2014) A new thermodynamic model for sapphirine: calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 32:287–299

    Article  CAS  Google Scholar 

  • White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55

    Article  CAS  Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286

    Article  CAS  Google Scholar 

  • Yoshimura Y, Motoyoshi Y, Miyamoto T (2008) Sapphirine+quartz association in garnet: implication for ultrahigh-temperature metamorphism at Rundvågshetta, Lützow-Holm Complex, East Antarctica. Geol Soc London Spec Publ 308:377–390

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the 58th Japan Antarctic Research Expedition, and the crew of the icebreaker Shirase. This study is a part of the Science Program of Japanese Antarctic Research Expedition (JARE). It was supported by the National Institute of Polar Research (NIPR) under MEXT. This work was partly supported by the NIPR [General Collaboration Projects 25–17 and 2–20], the Research Organization of Information and Systems [ROIS-DS-JOINT 004RP2018], and the Japan Society for the Promotion of Science (JSPS) [17H02976 to T.H. and 18H01313 to A.K.]. We thank anonymous reviewers for constructive comments, and Andreas Möller and Lutz Nasdala for valuable suggestions and careful editorial handling.

Funding

National Institute of Polar Research [General Collaboration Projects 25–17 and 2–20]. The Research Organization of Information and Systems [ROIS-DS-JOINT 004RP2018]. The Japan Society for the Promotion of Science (JSPS) [17H02976 to T.H. and 18H01313 to A.K.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotaro Baba.

Additional information

Editorial handling: A. Möller

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, S., Ohshiro, S., Kamei, A. et al. Low-pressure isobaric cooling metamorphic P–T paths from Botnnuten in the southern Lützow-Holm Complex, East Antarctica. Miner Petrol (2024). https://doi.org/10.1007/s00710-024-00859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00710-024-00859-0

Keywords

Navigation