Log in

Influence of delamination on uncertain dynamic characteristics of variable angle tow laminates using polynomial neural network

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents the delamination impact over the dynamic response of the variable angle tow (VAT) composite plates. The VAT plates with various fiber angles are constrained to different boundary conditions for parametric investigation, while delamination is made to present over two different locations with varying sizes. A comparative stochastic vibration study is performed to evaluate the contribution of composite properties to delaminated and intact plates. The randomness in the material properties is modeled with the efficient Latin hypercube sampling method. The polynomial neural network-based surrogate model, considered an efficient substitute for computationally expensive Monte Carlo simulation, is employed in the present work to examine the stochastic behavior of VAT plates. The contribution of the composite properties on the uncertain vibration characteristics is evaluated. It is observed from the investigations that the sensitivity of the composite properties varies significantly with the delamination. Lastly, a failure probability estimation is carried out with a developed polynomial neural network-based surrogate model to provide safe design estimation for various cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Hyer, M.W., Lee, H.H.: The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Compos. Struct. 18(3), 239–261 (1991)

    Article  Google Scholar 

  2. Honda, S., Narita, Y.: Natural frequencies and vibration modes of laminated composite plates reinforced with arbitrary curvilinear fiber shape paths. J. Sound Vib. 331(1), 180–191 (2012)

    Article  Google Scholar 

  3. Tian, Y., Pu, S., Shi, T., **a, Q.: A parametric divergence-free vector field method for the optimization of composite structures with curvilinear fibers. Comput. Methods Appl. Mech. Eng. 373, 113574 (2021)

    Article  MathSciNet  Google Scholar 

  4. Tian, Y., Shi, T., **a, Q.: A parametric level set method for the optimization of composite structures with curvilinear fibers. Comput. Methods Appl. Mech. Eng. 388, 114236 (2022)

    Article  MathSciNet  Google Scholar 

  5. Mori, Y., Matsuzaki, R., Kumekawa, N.: Variable thickness design for composite materials using curvilinear fiber paths. Compos. Struct. 263, 113723 (2021)

    Article  Google Scholar 

  6. Akhavan, H., Ribeiro, P.: Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Compos. Struct. 93(11), 3040–3047 (2011)

    Article  Google Scholar 

  7. Nik, M.A., Fayazbakhsh, K., Pasini, D., Lessard, L.: Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers. Compos. Struct. 94(8), 2306–2313 (2012)

    Article  Google Scholar 

  8. Murugan, S., Friswell, M.I.: Morphing wing flexible skins with curvilinear fiber composites. Compos. Struct. 99, 69–75 (2013)

    Article  Google Scholar 

  9. Chen, X.L., Liu, G.R., Lim, S.P.: An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape. Compos. Struct. 59(2), 279–289 (2003)

    Article  Google Scholar 

  10. Shao, D., Hu, S., Wang, Q., Pang, F.: Free vibration of refined higher-order shear deformation composite laminated beams with general boundary conditions. Compos. B Eng. 108, 75–90 (2017)

    Article  Google Scholar 

  11. Li, H., Pang, F., Wang, X., Du, Y., Chen, H.: Free vibration analysis for composite laminated doubly-curved shells of revolution by a semi analytical method. Compos. Struct. 201, 86–111 (2018)

    Article  Google Scholar 

  12. Ganapathi, M., Makhecha, D.P.: Free vibration analysis of multi-layered composite laminates based on an accurate higher-order theory. Compos. B Eng. 32(6), 535–543 (2001)

    Article  Google Scholar 

  13. Venkatachari, A., Natarajan, S., Haboussi, M., Ganapathi, M.: Environmental effects on the free vibration of curvilinear fibre composite laminates with cutouts. Compos. B Eng. 88, 131–138 (2016)

    Article  Google Scholar 

  14. Hachemi, M., Hamza-Cherif, S.M.: Free vibration of composite laminated plate with complicated cutout. Mech. Based Des. Struct. Mach. 48(2), 192–216 (2020)

    Article  Google Scholar 

  15. Tenek, L.H., Henneke II, E.G., Gunzburger, M.D.: Vibration of delaminated composite plates and some applications to non-destructive testing. Compos. Struct. 23(3), 253–262 (1993)

    Article  Google Scholar 

  16. Ju, F., Lee, H.P., Lee, K.H.: Finite element analysis of free vibration of delaminated composite plates. Compos. Eng. 5(2), 195–209 (1995)

    Article  Google Scholar 

  17. Barbero, E.J., Reddy, J.N.: Modeling of delamination in composite laminates using a layer-wise plate theory. Int. J. Solids Struct. 28(3), 373–388 (1991)

    Article  Google Scholar 

  18. Nanda, N.: Static analysis of delaminated composite shell panels using layerwise theory. Acta Mech. 225(10), 2893–2901 (2014)

    Article  Google Scholar 

  19. Sharma, N., Swain, P.K., Maiti, D.K.: Aeroelastic control of delaminated variable angle tow laminated composite plate using piezoelectric patches. J. Compos. Mater. 56(29), 4375–4408 (2022)

    Article  Google Scholar 

  20. Yam, L.H., Wei, Z., Cheng, L., Wong, W.O.: Numerical analysis of multi-layer composite plates with internal delamination. Comput. Struct. 82(7–8), 627–637 (2004)

    Article  Google Scholar 

  21. Alnefaie, K.: Finite element modeling of composite plates with internal delamination. Compos. Struct. 90(1), 21–27 (2009)

    Article  Google Scholar 

  22. Peck, S.O., Springer, G.S.: The behavior of delaminations in composite plates-analytical and experimental results. J. Compos. Mater. 25(7), 907–929 (1991)

    Article  Google Scholar 

  23. Figiel, Ł, Kamiński, M.: Numerical probabilistic approach to sensitivity analysis in a fatigue delamination problem of a two layer composite. Appl. Math. Comput. 209(1), 75–90 (2009)

    Google Scholar 

  24. Tiwari, P., Barman, S.K., Maiti, D.K., Maity, D.: Free vibration analysis of delaminated composite plate using 3D degenerated element. J. Aerosp. Eng. 32(5), 04019070 (2019)

    Article  Google Scholar 

  25. Rathi, A.K., Chakraborty, A.: Development of hybrid dimension adaptive sparse HDMR for stochastic finite element analysis of composite plate. Compos. Struct. 255, 112915 (2021)

    Article  Google Scholar 

  26. Karsh, P.K., Kumar, R.R., Dey, S.: Stochastic impact responses analysis of functionally graded plates. J. Braz. Soc. Mech. Sci. Eng. 41(11), 1–13 (2019)

    Article  Google Scholar 

  27. Karsh, P.K., Mukhopadhyay, T., Dey, S.: Stochastic dynamic analysis of twisted functionally graded plates. Compos. B Eng. 147, 259–278 (2018)

    Article  Google Scholar 

  28. Wang, Q., Di, W., Tin-Loi, F., Gao, W.: Machine learning aided stochastic structural free vibration analysis for functionally graded bar-type structures. Thin-Walled Struct. 144, 106315 (2019)

    Article  Google Scholar 

  29. Kamiński, M.: Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based finite element method. Finite Elem. Anal. Des. 200, 103648 (2022)

    Article  MathSciNet  Google Scholar 

  30. Shaker, A., Abdelrahman, W., Tawfik, M., Sadek, E.: Stochastic finite element analysis of the free vibration of functionally graded material plates. Comput. Mech. 41(5), 707–714 (2008)

    Article  Google Scholar 

  31. Mukhopadhyay, T., Karsh, P.K., Basu, B., Dey, S., et al.: Machine learning based stochastic dynamic analysis of functionally graded shells. Compos. Struct. 237, 111870 (2020)

    Article  Google Scholar 

  32. Sharma, N., Swain, P.K., Maiti, D.K., Singh, B.N.: Stochastic frequency analysis of laminated composite plate with curvilinear fiber. Mech. Adv. Mater. Struct. 29(6), 933–948 (2022)

    Article  Google Scholar 

  33. Trinh, M.-C., Nguyen, S.-N., Jun, H., Nguyen-Thoi, T.: Stochastic buckling quantification of laminated composite plates using cell-based smoothed finite elements. Thin-Walled Struct. 163, 107674 (2021)

    Article  Google Scholar 

  34. Husslage, B.G.M., Rennen, G., Van Dam, E.R., Den Hertog, D.: Space-filling Latin hypercube designs for computer experiments. Optim. Eng. 12(4), 611–630 (2011)

    Article  Google Scholar 

  35. Akhavan, H., Ribeiro, P.: Aeroelasticity of composite plates with curvilinear fibres in supersonic flow. Compos. Struct. 194, 335–344 (2018)

    Article  Google Scholar 

  36. Sharma, N., Swain, P.K., Maiti, D.K.: Uncertainty quantification in free vibration and aeroelastic response of variable angle tow laminated composite plate. J. Compos. Mater. 57(17), 2645–2668 (2023)

    Article  Google Scholar 

  37. Waldhart, C.: Analysis of tow-placed, variable-stiffness laminates. Master’s thesis, Virginia Tech (1996)

  38. Ribeiro, P., Akhavan, H.: Non-linear vibrations of variable stiffness composite laminated plates. Compos. Struct. 94(8), 2424–2432 (2012)

    Article  Google Scholar 

  39. Sharma, N., Swain, P.K., Maiti, D.K.: Static and dynamic control of smart damaged variable stiffness laminated composite plate with piezoelectric layers. Mech. Based Des. Struct. Mach. 52(6), 3527–3551 (2024)

    Article  Google Scholar 

  40. Gim, C.K.: Plate finite element modeling of laminated plates. Comput. Struct. 52(1), 157–168 (1994)

    Article  Google Scholar 

  41. Sharma, N., Swain, P.K., Maiti, D.K., Singh, B.N.: Static and free vibration analyses and dynamic control of smart variable stiffness laminated composite plate with delamination. Compos. Struct. 280, 114793 (2022)

    Article  Google Scholar 

  42. Chandrakar, P., Sharma, N., Maiti, D.K.: Stochastic buckling response of variable fiber spacing composite plate under thermal environment. J. Compos. Mater. 57(24), 3821–3839 (2023)

    Article  Google Scholar 

  43. Chandrakar, P., Sharma, N., Maiti, D.K.: Buckling variability analysis in damaged composite laminates subjected to thermally varying environment. J. Therm. Stress. 47(5), 629–651 (2024)

    Article  Google Scholar 

  44. Chandrakar, P., Sharma, N., Maiti, D.K.: Damage-induced buckling characteristics of thermally loaded variable angle tow laminated plates under uncertain environment. Eur. J. Mech. A/Solids 103, 105188 (2024)

    Article  MathSciNet  Google Scholar 

  45. Chandrakar, P., Sharma, N., Maiti, D.K.: Uncertain buckling characteristics of thermally loaded and internally defected variable fiber spacing composite laminates. J. Compos. Mater. 58(6), 723–754 (2024)

    Article  Google Scholar 

  46. Chandrakar, P., Sharma, N., Maiti, D.K.: Stochastic RBFN-based reliability estimation of variable fiber spacing composite plates under thermal loading. Int. J. Adv. Eng. Sci. Appl. Math. 16, 108–116 (2024)

    Article  MathSciNet  Google Scholar 

  47. Jha, B.N., Li, H.: Structural reliability analysis using a hybrid HDMR-ANN method. J. Central South Univ. 24(11), 2532–2541 (2017)

    Article  Google Scholar 

  48. Chai, X., Sun, Z., Wang, J., Zhang, Y., Yu, Z.: A new kriging-based learning function for reliability analysis and its application to fatigue crack reliability. IEEE Access 7, 122811–122819 (2019)

    Article  Google Scholar 

  49. Chowdhury, R., Rao, B.N., Prasad, A.M.: High-dimensional model representation for structural reliability analysis. Commun. Numer. Methods Eng. 25(4), 301–337 (2009)

    Article  MathSciNet  Google Scholar 

  50. Sharma, N., Nishad, M., Maiti, D.K., Sunny, M.R., Singh, B.N.: Uncertainty quantification in buckling strength of variable stiffness laminated composite plate under thermal loading. Compos. Struct. 275, 114486 (2021)

    Article  Google Scholar 

  51. Dash, R.C., Sharma, N., Maiti, D.K., Singh, B.N.: Uncertainty analysis of gallo** based piezoelectric energy harvester system using polynomial neural network. J. Intell. Mater. Syst. Struct. 33(16), 2019–2032 (2022)

    Article  Google Scholar 

  52. Sharma, N., Swain, P.K., Maiti, D.K., Singh, B.N.: Vibration and uncertainty analysis of functionally graded sandwich plate using layerwise theory. AIAA J. 60(6), 3402–3423 (2022)

    Article  Google Scholar 

  53. Sharma, N., Swain, P.K., Maiti, D.K., Singh, B.N.: Stochastic aeroelastic analysis of laminated composite plate with variable fiber spacing. J. Compos. Mater. 55(30), 4527–4547 (2021)

    Article  Google Scholar 

  54. Hirwani, C.K., Patil, R.K., Panda, S.K., Mahapatra, S.S., Mandal, S.K., Srivastava, L., Buragohain, M.K.: Experimental and numerical analysis of free vibration of delaminated curved panel. Aerosp. Sci. Technol. 54, 353–370 (2016)

    Article  Google Scholar 

  55. Houmat, A.: Three-dimensional free vibration analysis of variable stiffness laminated composite rectangular plates. Compos. Struct. 194, 398–412 (2018)

    Article  Google Scholar 

  56. Yazdani, S., Ribeiro, P.: Modes of vibration of unsymmetric multilayered composite plates with curvilinear fibres. In: Proceedings of the 9th International Conference on Structural Dynamics, Eurodyn, Porto, Portugal, vol 30 (2014)

Download references

Funding

There was no funding obtained for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Sharma.

Ethics declarations

Data availability statement

Any data from third party have not been used in this research work.

Conflict of interest statement

There is no conflict of interest in publishing the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Chandrakar, P. & Maiti, D.K. Influence of delamination on uncertain dynamic characteristics of variable angle tow laminates using polynomial neural network. Acta Mech (2024). https://doi.org/10.1007/s00707-024-04019-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-04019-5

Navigation