Log in

Postbuckling of functionally graded microbeams: a theoretical study based on a reformulated strain gradient elasticity theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A size-dependent post buckling analysis of functionally graded (FG) microbeams is conducted by using an analytical solution based on a reformulated strain gradient elasticity theory (RSGET). The nonlinear behavior of post buckling is considered by employing the von-Karman nonlinear strain–displacement relation. The microstructure-dependent behavior of the microbeam is captured by the RSGET which incorporated both couple stress and strain gradient effects using one size-dependent parameter for each. The material properties of the FG microbeam changed along the thickness direction, which are described using a power law relation. Based on the principle of minimum potential energy, the equations of equilibrium and boundary conditions of the Euler–Bernoulli microbeam are obtained. The post buckling response of FG mcirobeams with different boundary conditions are analytically derived. Moreover, the effects of the length scale parameter, material gradient index, length-thickness ratio and Poisson's ratio on the post buckling responses are studied. In addition, the total critical pressure for the FG array structures is estimated. These results are helpful for designing FG-MEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mahamood RM, Akinlabi ET. Types of functionally graded materials and their areas of application. Functionally graded materials. Springer: Cham; 2017.

  2. Popovich, V.A., Borisov, E.V., Popovich, A.A., et al.: Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater. Des. 114, 441–449 (2017)

    Article  Google Scholar 

  3. Dalia, M., Mohamed, E.: Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a Review. J. Manuf. Mater. Process. 1, 13–13 (2017)

    Google Scholar 

  4. Yan, L., Chen, Y., Liou, F.: Additive manufacturing of functionally graded metallic materials using laser metal deposition. Addit. Manuf. 31, 100901 (2019)

    Google Scholar 

  5. Shoghmand, A., Ahmadian, M.T.: Dynamics and vibration analysis of an electrostatically actuated FGM microresonator involving flexural and torsional modes. Int. J. Mech. Sci. 148, 422–441 (2018)

    Article  Google Scholar 

  6. Jia, X.L., Ke, L.L., Zhong, X.L., Sun, Y., Yang, J., Kitipornchai, S.: Thermal-mechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory. Compos. Struct. 202, 625–634 (2018)

    Article  Google Scholar 

  7. Li, H.N., Wang, W., Lai, S.K., Yao, L.Q., Li, C.: Nonlinear vibration and stability analysis of rotating functionally graded piezoelectric nanobeams. Int. J. Struct. Stab. Dyn. (2023). https://doi.org/10.1142/S0219455424501037

    Article  Google Scholar 

  8. **, H., Sui, S., Zhu, C., Li, C.: Axial free vibration of rotating FG piezoelectric nano-rods accounting for nonlocal and strain gradient effects. J. Vib. Eng. Technol. 11(2), 537–549 (2023)

    Article  Google Scholar 

  9. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to micro cantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  10. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  Google Scholar 

  11. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  12. Aifantis, E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95, 199–314 (1999)

    Article  Google Scholar 

  13. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (2001)

    Article  MathSciNet  Google Scholar 

  14. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  15. Anthoine, A.: Effect of couple-stresses on the elastic bending of beams. Int. J. Solids Struct. 37, 1003–1018 (2000)

    Article  Google Scholar 

  16. Chen, J., Qu, Y., Guo, Z., Li, D., Zhang, G.: A one-dimensional model for mechanical coupling metamaterials using couple stress theory. Math. Mech. Solids 28(12), 2732–2755 (2023)

    Article  MathSciNet  Google Scholar 

  17. Chen, J.B., Li, D.B., Zhang, G.Y., Qu, Y.L.: Constitutive matrices for 32 typical classes of crystalline solids with couple stress, quadrupole, and curvature-based flexoelectric effects. Acta Mech. 234(11), 5301–5330 (2023)

    Article  MathSciNet  Google Scholar 

  18. Qu, Y.L., Zhang, G.Y., Fan, Y.M., **, F.: A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I—reconsideration of curvature-based flexoelectricity theory. Math. Mech. Solids 26(11), 1647–1659 (2021)

    Article  MathSciNet  Google Scholar 

  19. Qu, Y., Guo, Z., **, F., Zhang, G.: A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part II-variational formulations and applications in plates. Math. Mech. Solids 27(12), 2567–2587 (2022)

    Article  MathSciNet  Google Scholar 

  20. Zhang, G.Y., Guo, Z.W., Qu, Y.L., Gao, X.L., **, F.: A new model for thermal buckling of an anisotropic elastic composite beam incorporating piezoelectric, flexoelectric and semiconducting effects. Acta Mech. 233(5), 1719–1738 (2022)

    Article  MathSciNet  Google Scholar 

  21. Zhang, G.Y., He, Z.Z., Gao, X.L., Zhou, H.W.: Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects. Arch. Appl. Mech. 93(1), 245–260 (2023)

    Article  Google Scholar 

  22. Zhang, G., He, Z., Qin, J., Hong, J.: Magnetically tunable bandgaps in phononic crystal nanobeams incorporating microstructure and flexoelectric effects. Appl. Math. Model. 111, 554–566 (2022)

    Article  MathSciNet  Google Scholar 

  23. Zhu, F., Li, N., Pan, E.N., Qu, Y.L.: A new Stroh formalism for gradient electro-mechanics with applications to Lamb waves in piezoelectric and flexoelectric coupled plates. J. Appl. Phys. 135(11), 114103 (2024)

    Article  Google Scholar 

  24. Li, C., Zhu, C.X., Zhang, N., Sui, S.H., Zhao, J.B.: Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory. Appl. Math. Model. 110, 583–602 (2022)

    Article  MathSciNet  Google Scholar 

  25. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  Google Scholar 

  26. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  27. Yang, F., Chong, A.C.M., Lam, D.D.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  Google Scholar 

  28. Zhang, G.Y., Qu, Y.L., Gao, X.L., **, F.: A transversely isotropic magneto–electro–elastic Timoshenko beam model incorporating microstructure and foundation effects. Mech. Mater. 149, 103412 (2020)

    Article  Google Scholar 

  29. Qu, Y.L., Li, P., Zhang, G.Y., **, F., Gao, X.L.: A microstructure-dependent anisotropic magneto–electro–elastic Mindlin plate model based on an extended modified couple stress theory. Acta Mech. 231, 4323–4350 (2020)

    Article  MathSciNet  Google Scholar 

  30. Zhang, G.Y., Gao, X.L., Guo, Z.: A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech. 228, 3811–3825 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zhang, G.Y., Gao, X.L., Littlefield, A.G.: A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects. Acta Mech. 232, 2225–2248 (2021)

    Article  MathSciNet  Google Scholar 

  32. Zhang, G.Y., Gao, X.L.: A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mech. 230, 243–264 (2019)

    Article  MathSciNet  Google Scholar 

  33. He, Z., Zhang, G., Chen, X., Cong, Y., Gu, S., Hong, J.: Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates. Int. J. Mech. Sci. 239, 107892 (2023)

    Article  Google Scholar 

  34. Park, S.K., Gao, X.L.: A New Bernoulli–Euler Beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  35. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  Google Scholar 

  36. Yin, S.H., Deng, Y., Yu, T.T., Gu, S.T., Zhang, G.Y.: Isogeometric analysis for non-classical Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Appl. Math. Model. 89, 470–485 (2021)

    Article  MathSciNet  Google Scholar 

  37. Yin, S.H., Deng, Y., Zhang, G.Y., Yu, T.T.: A new isogeometric Timoshenko beam model incorporating microstructures and surface energy effects. Math. Mech. Solids 25, 2005–2022 (2020)

    Article  MathSciNet  Google Scholar 

  38. Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  MathSciNet  Google Scholar 

  39. Şimşek, M., Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    Article  MathSciNet  Google Scholar 

  40. Attia, M.A., Shanab, R.A.: Vibration characteristics of two-dimensional FGM nanobeams with couple stress and surface energy under general boundary conditions. Aerosp. Sci. Technol. 111, 106552 (2021)

    Article  Google Scholar 

  41. Vo, D., Zhou, K., Rungamornrat, J., Bui, T.Q.: Spatial arbitrarily curved microbeams with the modified couple stress theory: formulation of equations of motion. Eur. J. Mech.-A/Solids 92, 104475 (2022)

    Article  MathSciNet  Google Scholar 

  42. Fang, W., Hu, H., Yu, T., Bui, T.Q.: Spatially curved functionally graded Timoshenko microbeams: a numerical study using IGA. Compos. Struct. 279, 114833 (2022)

    Article  Google Scholar 

  43. Zhang, Z., Li, S.: Thermoelastic dam** of functionally graded material micro-beam resonators based on the modified couple stress theory. Acta Mech. Solida Sin. 33, 496–507 (2020)

    Article  Google Scholar 

  44. Wang, Y.W., **e, K., Fu, T.R., Zhang, W.: A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory. Eur. Phys. J. Plus 135, 1–19 (2020)

    Article  Google Scholar 

  45. Guo, L., **n, X., Shahsavari, D., Karami, B.: Dynamic response of porous E-FGM thick microplate resting on elastic foundation subjected to moving load with acceleration. Thin-Walled Struct. 173, 108981 (2022)

    Article  Google Scholar 

  46. Taghizadeh, M., Babaei, M., Dimitri, R., Tornabene, F.: Assessment of critical buckling load of bi-directional functionally graded truncated conical micro-shells using modified couple stress theory and Ritz method. Mech. Based Des. Struct. Mach. 52, 3456–3487 (2023)

    Article  Google Scholar 

  47. Farahani, S.M., Jafari Mehrabadi, S., Mohammadi, S.V.: Vibration analysis of a smart viscoelastic porous sandwich micro-shell with magnetorheological fluid core using the modified couple stress theory. Waves Random Complex Media (2024). https://doi.org/10.1080/17455030.2024.2325483

    Article  Google Scholar 

  48. Abouelregal, A.E., Rabih, M.N.A., Alharbi, H.A., et al.: A modified couple stress model to analyze the effect of size-dependent on thermal interactions in rotating nanobeams whose properties change with temperature. Math. Mech. Solids (2024). https://doi.org/10.1177/10812865241228301

    Article  Google Scholar 

  49. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  50. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  Google Scholar 

  51. Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur. J. Mech. A/Solids 61, 92–109 (2017)

    Article  MathSciNet  Google Scholar 

  52. Kong, S.L., Zhou, S.J., Nie, Z.F., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  Google Scholar 

  53. Ansari, R., Gholami, R., Sahmani, S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94, 221–228 (2011)

    Article  Google Scholar 

  54. Karami, B., Janghorban, M.: On the dynamics of porous nanotubes with variable material properties and variable thickness. Int. J. Eng. Sci. 136, 53–66 (2019)

    Article  MathSciNet  Google Scholar 

  55. Karami, B., Janghorban, M., Rabczuk, T.: Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory. Compos. Struct. 227, 111249 (2019)

    Article  Google Scholar 

  56. Karamanli, A., Vo, T.P.: Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. Compos. Struct. 246, 112401 (2020)

    Article  Google Scholar 

  57. Thai, C.H., Ferreira, A.J.M., Phung-Van, P.: Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory. Eng. Anal. Boundary Elem. 117, 284–298 (2020)

    Article  MathSciNet  Google Scholar 

  58. Barretta, R., Faghidian, S.A., de Sciarra, F.M., et al.: On torsion of nonlocal Lam strain gradient FG elastic beams. Compos. Struct. 233, 111550 (2020)

    Article  Google Scholar 

  59. Hung, P.T., Nguyen-Xuan, H., Phung-Van, P., et al.: Modified strain gradient analysis of the functionally graded triply periodic minimal surface microplate using isogeometric approach. Eng. Comput. (2024). https://doi.org/10.1007/s00366-023-01942-4

    Article  Google Scholar 

  60. Ramazani Darvazi, B., Rezapour, J., Rouhi, S., Gholami, R.: Nonlinear vortex induced vibration analysis of electrostatic actuated microbeam based on modified strain gradient theory. J. Vib. Eng. Technol. 12(2), 1351–1364 (2024)

    Article  Google Scholar 

  61. Zhang, G.Y., Gao, X.L.: A new Bernoulli–Euler beam model based on a reformulated strain gradient elasticity theory. Math. Mech. Solids 25, 630–643 (2019)

    Article  MathSciNet  Google Scholar 

  62. Zhang, G.Y., Zheng, C.Y., Mi, C.W., Gao, X.L.: A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory. Mech. Adv. Mater. Struct. 29, 2521–2530 (2021)

    Article  Google Scholar 

  63. Hong, J., Wang, S.P., Zhang, G.Y., Mi, C.W.: Bending, buckling and vibration analysis of complete microstructure-dependent functionally graded material microbeams. Int. J. Appl. Mech. 13, 2150057 (2021)

    Article  Google Scholar 

  64. Yin, S.H., **ao, Z.B., Deng, Y., Zhang, G.Y., Liu, J.G., Gu, S.T.: Isogeometric analysis of size-dependent Bernoulli–Euler beam based on a reformulated strain gradient elasticity theory. Comput. Struct. 253, 106577 (2021)

    Article  Google Scholar 

  65. Mohammadi, H., Mahzoon, M.: Thermal effects on postbuckling of nonlinear microbeams based on the modified strain gradient theory. Compos. Struct. 106, 764–776 (2013)

    Article  Google Scholar 

  66. Li, L., Hu, Y.: Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. Int. J. Mech. Sci. 120, 159–170 (2017)

    Article  Google Scholar 

  67. Khorshidi, M.A., Shariati, M., Emam, S.A.: Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. Int. J. Mech. Sci. 110, 160–169 (2016)

    Article  Google Scholar 

  68. Chen, X.C., Li, Y.H.: Size-dependent post-buckling behaviors of geometrically imperfect microbeams. Mech. Res. Commun. 88, 25–33 (2018)

    Article  Google Scholar 

  69. Taati, E.: On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment. Int. J. Eng. Sci. 128, 63–78 (2018)

    Article  MathSciNet  Google Scholar 

  70. Babaei, H., Eslami, M.R.: Size-dependent vibrations of thermally pre/post-buckled FG porous micro-tubes based on modified couple stress theory. Int. J. Mech. Sci. 180, 105694 (2020)

    Article  Google Scholar 

  71. Sahmani, S., Safaei, B.: Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Appl. Math. Model. 82, 336–358 (2020)

    Article  MathSciNet  Google Scholar 

  72. Shaat, M.: A reduced micromorphic model for multiscale materials and its applications in wave propagation. Compos. Struct. 201, 446–454 (2018)

    Article  Google Scholar 

  73. Zhang, G.Y., Gao, X.L., Zheng, C.Y., Mi, C.W.: A non-classical Bernoulli–Euler beam model based on a simplified micromorphic elasticity theory. Mech. Mater. 161, 103967 (2021)

    Article  Google Scholar 

  74. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    Google Scholar 

  75. Nayfeh, A.H., Emam, S.A.: Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn. 54, 395–408 (2008)

    Article  MathSciNet  Google Scholar 

  76. Mohammad-Abadi, M., Daneshmehr, A.R.: Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions. Int. J. Eng. Sci. 74, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  77. Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  78. Liang, C., Zhang, C.L., Chen, W.Q., Yang, J.S.: Static buckling of piezoelectric semiconductor fibers. Mater. Res. Express 6(12), 125919 (2020)

    Article  Google Scholar 

  79. Gere, J.M., Timoshenko, S.P.: Mechanics of Materials 2nd edn. Monterey, CA: Brooks/Cole Engineering Division (1984)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52075465) and the Hunan Provincial Natural Science Foundation of China (2021JJ30649). The financial supports are gratefully acknowledged.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tinh Quoc Bui or Shuitao Gu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Wang, X., Bui, T.Q. et al. Postbuckling of functionally graded microbeams: a theoretical study based on a reformulated strain gradient elasticity theory. Acta Mech (2024). https://doi.org/10.1007/s00707-024-04009-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-04009-7

Navigation