Log in

Bernstein polynomials in analyzing nonlinear forced vibration of curved fractional viscoelastic beam with viscoelastic boundaries

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, an effective numerical Bernstein polynomials operational matrix is exploited to study the nonlinear forced vibration of fractional viscoelastic curved beam with viscoelastic nonlinear boundary conditions, for the first time. The Caputo fractional derivative is employed to incorporate viscoelastic material having nonlinear behavior. Based on Euler–Bernoulli beam theory and von Kármán geometric nonlinearity, the governing equation of viscoelastic curved beam which is a nonlinear integro-partial fractional differential equation is introduced. Based on the collocation method of Bernstein polynomials approximation, the generalized integer-order operational matrices of differentiation and integration as well as fractional-order operational matrix of differentiation are derived. Using Bernstein polynomials operational matrices (BPOM), the nonlinear static problem is discretized; then, it is solved via Newton's method. To compute the linear vibration mode, the linear vibration problem is discretized via BPOM and it is solved as a linear eigenvalue problem. Discretized by the Galerkin approximation, the fractional-order nonlinear integro-partial differential equation is transformed into a nonlinear fractional-order duffing-type equation. The fractional-order duffing equation is discretized using BPOM resulting nonlinear eigenvalue problem, which can be easily solved by pseudo-arc length continuation algorithm. The effects of the Caputo fractional derivative order, foundation parameters, amplitude of initial curvature, viscoelastic parameters and amplitude of excitation force on the nonlinear forced vibration of the viscoelastic beam are investigated through a detailed parametric study. The proposed procedure is supportive in the analysis and design of curved viscoelastic structure with non-classical viscoelastic boundary conditions under the dynamic mechanical loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abo-Bakr, R.M., Mohamed, N.A., Mohamed, S.A.: Meta-heuristic algorithms for solving nonlinear differential equations based on multivariate Bernstein polynomials. Soft. Comput. 26(2), 605–619 (2022). https://doi.org/10.1007/s00500-021-06535-1

    Article  Google Scholar 

  2. Abo-bakr, R.M., Mohamed, N., Eltaher, M.A., Emam, S.: Multi-objective optimization for snap-through response of spherical shell panels. Appl. Math. Model. (2023). https://doi.org/10.1016/j.apm.2023.12.014

    Article  Google Scholar 

  3. Alfadil, H., Abouelregal, A.E., Marin, M., Carrera, E.: Goufo-Caputo fractional viscoelastic photothermal model of an unbounded semiconductor material with a cylindrical cavity. Mech. Adv. Mater. Struct. 21, 1–14 (2023). https://doi.org/10.1080/15376494.2023.2278181

    Article  Google Scholar 

  4. Ansari, R., Faraji Oskouie, M., Rouhi, H.: Studying linear and nonlinear vibrations of fractional viscoelastic Timoshenko micro-/nano-beams using the strain gradient theory. Nonlinear Dyn. 87, 695–711 (2017). https://doi.org/10.1007/s11071-016-3069-6

    Article  Google Scholar 

  5. Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23, 918–925 (1985). https://doi.org/10.2514/3.9007

    Article  Google Scholar 

  6. Calaf-Chica, J., Cea-González, V., García-Tárrago, M.J., Gómez-Gil, F.J.: Fractional viscoelastic models for the estimation of the frequency response of rubber bushings based on relaxation tests. Results Eng. 20, 101465 (2023). https://doi.org/10.1016/j.rineng.2023.101465

    Article  Google Scholar 

  7. Cui, Y., Qu, J., Han, C., Cheng, G., Zhang, W., Chen, Y.: Shifted Bernstein-Legendre polynomial collocation algorithm for numerical analysis of viscoelastic Euler–Bernoulli beam with variable order fractional model. Math. Comput. Simul 200, 361–376 (2022). https://doi.org/10.1016/j.matcom.2022.04.035

    Article  MathSciNet  Google Scholar 

  8. Dang, R., Chen, Y.: Fractional modelling and numerical simulations of variable-section viscoelastic arches. Appl. Math. Comput. 409, 126376 (2021). https://doi.org/10.1016/j.amc.2021.126376

    Article  MathSciNet  Google Scholar 

  9. Di Paola, M., Heuer, R., Pirrotta, A.: Fractional visco-elastic Euler–Bernoulli beam. Int. J. Solids Struct. 50(22–23), 3505–3510 (2013). https://doi.org/10.1016/j.ijsolstr.2013.06.010

    Article  Google Scholar 

  10. Doha, E.H., Bhrawy, A.H., Saker, M.A.: Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations. Appl. Math. Lett.Lett. 24(4), 559–565 (2011). https://doi.org/10.1016/j.aml.2010.11.013

    Article  MathSciNet  Google Scholar 

  11. Galucio, A.C., Deü, J.F., Ohayon, R.: Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput. Mech. 33, 282–291 (2004). https://doi.org/10.1007/s00466-003-0529-x

    Article  Google Scholar 

  12. Han, C., Chen, Y., Liu, D.Y., Boutat, D.: Numerical analysis of viscoelastic rotating beam with variable fractional order model using shifted Bernstein–Legendre polynomial collocation algorithm. Fractal Fract. 5(1), 8 (2021). https://doi.org/10.3390/fractalfract5010008

    Article  Google Scholar 

  13. Han, C., Chen, Y., Cheng, G., Serra, R., Wang, L., Feng, J.: Numerical analysis of axially non-linear viscoelastic string with the variable fractional order model by using Bernstein polynomials algorithm. Int. J. Comput. Math. 99(3), 537–552 (2022). https://doi.org/10.1080/00207160.2021.1924367

    Article  MathSciNet  Google Scholar 

  14. Hao, Y., Zhang, M., Cui, Y., Cheng, G., **e, J., Chen, Y.: Dynamic analysis of variable fractional order cantilever beam based on shifted Legendre polynomials algorithm. J. Comput. Appl. Math. 423, 114952 (2023). https://doi.org/10.1016/j.cam.2022.114952

    Article  MathSciNet  Google Scholar 

  15. Javadi, M., Rahmanian, M.: Nonlinear vibration of fractional Kelvin-Voigt viscoelastic beam on nonlinear elastic foundation. Commun. Nonlinear Sci. Numer. Simul. 98, 105784 (2021). https://doi.org/10.1016/j.cnsns.2021.105784

    Article  MathSciNet  Google Scholar 

  16. **, S., **e, J., Qu, J., Chen, Y.: A numerical method for simulating viscoelastic plates based on fractional order model. Fractal Fract. 6(3), 150 (2022). https://doi.org/10.3390/fractalfract6030150

    Article  Google Scholar 

  17. Kanda, K., Maruyama, T.: Theoretical analysis of forced Lamb waves using the method of multiple scales and Green’s function method. Acta Mech. (2023). https://doi.org/10.1007/s00707-023-03573-8

    Article  MathSciNet  Google Scholar 

  18. Li, X., Sha, A., Jiao, W., Song, R., Cao, Y., Li, C., Liu, Z.: Fractional derivative Burgers models describing dynamic viscoelastic properties of asphalt binders. Constr. Build. Mater. 408, 133552 (2023). https://doi.org/10.1016/j.conbuildmat.2023.133552

    Article  Google Scholar 

  19. Li, Y., Wang, H., Zheng, X.: Analysis of a fractional viscoelastic Euler–Bernoulli beam and identification of its piecewise continuous polynomial order. Fract. Cal. Appl. Anal. 26(5), 2337–2360 (2023). https://doi.org/10.1007/s13540-023-00193-w

    Article  MathSciNet  Google Scholar 

  20. Loghman, E., Bakhtiari-Nejad, F., Kamali, A., Abbaszadeh, M., Amabili, M.: Nonlinear vibration of fractional viscoelastic micro-beams. Int. J. Non-Linear Mech. 137, 103811 (2021). https://doi.org/10.1016/j.ijnonlinmec.2021.103811

    Article  Google Scholar 

  21. Loghman, E., Kamali, A., Bakhtiari-Nejad, F., Abbaszadeh, M., Amabili, M.: On the combined Shooting–Pseudo–Arclength method for finding frequency response of nonlinear fractional-order differential equations. J. Sound Vib. 516, 116521 (2022). https://doi.org/10.1016/j.jsv.2021.116521

    Article  Google Scholar 

  22. Mohamed, N.A., Shanab, R.A., Eltaher, M.A., Abdelrahman, A.A.: Vibration response of viscoelastic perforated higher-order nanobeams rested on an elastic substrate under moving load. Acta Mech. (2023). https://doi.org/10.1007/s00707-023-03776-z

    Article  Google Scholar 

  23. Mohamed, S.A., Mohamed, N., Abo-bakr, R.M., Eltaher, M.A.: Multi-objective optimization of snap-through instability of helicoidal composite imperfect beams using Bernstein polynomials method. Appl. Math. Model. 120, 301–329 (2023). https://doi.org/10.1016/j.apm.2023.03.034

    Article  MathSciNet  Google Scholar 

  24. Paunović, S., Cajić, M., Karličić, D., Mijalković, M.: A novel approach for vibration analysis of fractional viscoelastic beams with attached masses and base excitation. J. Sound Vib. 463, 114955 (2019). https://doi.org/10.1016/j.jsv.2019.114955

    Article  Google Scholar 

  25. Permoon, M.R., Haddadpour, H., Shakouri, M.: Nonlinear vibration analysis of fractional viscoelastic cylindrical shells. Acta Mech. 231, 4683–4700 (2020). https://doi.org/10.1007/s00707-020-02785-6

    Article  MathSciNet  Google Scholar 

  26. Qing, J., Zhou, S., Wu, J., Shao, M., Tang, J.: Parametric resonance of an axially accelerating viscoelastic membrane with a fractional model. Commun. Nonlinear Sci. Numer. Simul. 130, 107691 (2024). https://doi.org/10.1016/j.cnsns.2023.107691

    Article  MathSciNet  Google Scholar 

  27. Song, J.P., She, G.L.: Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment. Arch. Civ. Mech. Eng. 24(1), 1–31 (2024). https://doi.org/10.1007/s43452-023-00846-w

    Article  MathSciNet  Google Scholar 

  28. Song, J.P., She, G.L., He, Y.J.: Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads. Geomech. Eng. 36(2), 99 (2024). https://doi.org/10.12989/gae.2024.36.2.099

    Article  Google Scholar 

  29. Sun, L., Chen, Y.: Numerical analysis of variable fractional viscoelastic column based on two-dimensional Legendre wavelets algorithm. Chaos Solitons Fractals 152, 111372 (2021). https://doi.org/10.1016/j.chaos.2021.111372

    Article  MathSciNet  Google Scholar 

  30. Suzuki, J.L., Kharazmi, E., Varghaei, P., Naghibolhosseini, M., Zayernouri, M.: Anomalous nonlinear dynamics behavior of fractional viscoelastic beams. J. Comput. Nonlinear Dyn. 16(11), 111005 (2021). https://doi.org/10.1115/1.4052286

    Article  Google Scholar 

  31. Vazirzadeh, M., Rouzegar, J., Heydari, M.H.: A refined fractional viscoelastic model for vibration analysis of moderately-thick plates. Mech. Res. Commun. (2024). https://doi.org/10.1016/j.mechrescom.2023.104224

    Article  Google Scholar 

  32. Wang, L., Chen, Y.M.: Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam. Chaos Solitons Fractals 132, 109585 (2020). https://doi.org/10.1016/j.chaos.2019.109585

    Article  MathSciNet  Google Scholar 

  33. Wang, Y., Chen, Y.: Shifted Legendre polynomials algorithm used for the dynamic analysis of viscoelastic pipes conveying fluid with variable fractional order model. Appl. Math. Model. 81, 159–176 (2020). https://doi.org/10.1016/j.apm.2019.12.011

    Article  MathSciNet  Google Scholar 

  34. Xu, Y., Wei, P., Zhao, L.: Flexural waves in nonlocal strain gradient high-order shear beam mounted on fractional-order viscoelastic Pasternak foundation. Acta Mech. 233(10), 4101–4118 (2022). https://doi.org/10.1007/s00707-022-03334-z

    Article  MathSciNet  Google Scholar 

  35. Yang, A., Zhang, Q., Qu, J., Cui, Y., Chen, Y.: Solving and numerical simulations of fractional-order governing equation for micro-beams. Fractal Fract. 7(2), 204 (2023). https://doi.org/10.3390/fractalfract7020204

    Article  Google Scholar 

  36. Ye, S.Q., Mao, X.Y., Ding, H., Ji, J.C., Chen, L.Q.: Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions. Int. J. Mech. Sci. 168, 105294 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105294

    Article  Google Scholar 

  37. Zhang, Y.W., She, G.L.: Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration. Eng. Struct. 300, 117177 (2024). https://doi.org/10.1016/j.engstruct.2023.117177

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eltaher.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, N., Eltaher, M.A., Mohamed, S.A. et al. Bernstein polynomials in analyzing nonlinear forced vibration of curved fractional viscoelastic beam with viscoelastic boundaries. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03954-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03954-7

Navigation