Log in

Investigation of turbulent multiphase swirling jets

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Swirl has been employed as a mechanism for enhancing the spreading rate of jets, especially in the multiphase context of liquid droplets suspended in a gaseous jet. This work examines the effect of the swirl phenomenon on the downstream development of turbulent round jet sprays using Euler–Lagrange simulations. Two simulation sets are performed: The first set consists of single-phase simulations, and the second set consists of two-phase large eddy simulations where the droplets are stochastically added to the computational domain using an injection model. The simulations consider five different non-dimensional swirl strengths from 0.0 to 2.0 at a Reynolds number of 50,000. As simulation results, we obtain the total normalized number flux of droplets and for each droplet size bin along with the mean and standard deviation of the droplet velocity distributions. We quantify the influence of swirl on the higher-order statistics of the spray behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Huck, P., Osuna-Orozco, R., Machicoane, N., Aliseda, A.: Spray dispersion regimes following atomization in a turbulent co-axial gas jet. J. Fluid Mech. 932, 36 (2022)

    MathSciNet  Google Scholar 

  2. Gomez, A., Tang, K.: Charge and fission of droplets in electrostatic sprays. Phys. Fluids 6(1), 404–414 (1994)

    Google Scholar 

  3. Tang, K., Gomez, A.: On the structure of an electrostatic spray of monodisperse droplets. Phys. Fluids 6(7), 2317–2332 (1994)

    Google Scholar 

  4. Kim, K., Turnbull, R.J.: Generation of charged drops of insulating liquids by electrostatic spraying. J. Appl. Phys. 47(5), 1964–1969 (1976)

    Google Scholar 

  5. Kumara Gurubaran, R., Sujith, R.: Dynamics of spray-swirl-acoustics interactions. Int. J. Spray Combust. Dyn. 3(1), 1–22 (2011)

    Google Scholar 

  6. Dubey, R., Black, D., McQuay, M., Carvalho, J., Jr.: The effect of acoustics on an ethanol spray flame in a propane-fired pulse combustor. Combust. Flame 110(1–2), 25–38 (1997)

    Google Scholar 

  7. Sujith, R.: An experimental investigation of interaction of sprays with acoustic fields. Exp. Fluids 38, 576–587 (2005)

    Google Scholar 

  8. Du, Q., Li, X.: Effect of gas stream swirls on the instability of viscous annular liquid jets. Acta Mech. 176(1–2), 61–81 (2005)

    Google Scholar 

  9. Vignat, G., Rajendram Soundararajan, P., Durox, D., Vié, A., Renaud, A., Candel, S.: A joint experimental and large eddy simulation characterization of the liquid fuel spray in a swirl injector. J. Eng. Gas Turbines Power 143(8), 081019 (2021)

    Google Scholar 

  10. Chryssakis, C.A., Assanis, D.N., Lee, J.-K., Nishida, K.: Fuel spray simulation of high-pressure swirl-injector for DISI engines and comparison with laser diagnostic measurements. Technical Report, SAE Technical Paper (2003)

  11. Wang, L., Feng, J., Gao, X., Peng, X.: Investigation on the oil-gas separation efficiency considering oil droplets breakup and collision in a swirling flow. Chem. Eng. Res. Des. 117, 394–400 (2017)

    Google Scholar 

  12. Zhao, J., Yang, L.: Simulation and experimental study on the atomization character of the pressure-swirl nozzle. Open J. Fluid Dyn. 2(4), 271–277 (2012)

    Google Scholar 

  13. Jones, W., Lyra, S., Navarro-Martinez, S.: Large eddy simulation of a swirl stabilized spray flame. Proc. Combust. Inst. 33(2), 2153–2160 (2011)

    Google Scholar 

  14. **ong, Q.-Q., Chen, Z., Li, S.-W., Wang, Y.-D., Xu, J.-H.: Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel. Chem. Eng. Sci. 185, 157–167 (2018)

    Google Scholar 

  15. Yu, H., **, Y.-C., Cheng, W., Yang, X., Peng, X., **e, Y.: Multiscale simulation of atomization process and droplet particles diffusion of pressure-swirl nozzle. Powder Technol. 379, 127–143 (2021)

    Google Scholar 

  16. Li, X.-G., Fritsching, U.: Process modeling pressure-swirl-gas-atomization for metal powder production. J. Mater. Process. Technol. 239, 1–17 (2017)

    Google Scholar 

  17. Apte, S.V., Mahesh, K., Gorokhovski, M., Moin, P.: Stochastic modeling of atomizing spray in a complex swirl injector using large eddy simulation. Proc. Combust. Inst. 32(2), 2257–2266 (2009)

    Google Scholar 

  18. Crialesi-Esposito, M., Gonzalez-Montero, L., Salvador, F.: Effects of isotropic and anisotropic turbulent structures over spray atomization in the near field. Int. J. Multiph. Flow 150, 103891 (2022)

    MathSciNet  Google Scholar 

  19. Kim, J., Choi, H.: Large eddy simulation of a circular jet: effect of inflow conditions on the near field. J. Fluid Mech. 620, 383–411 (2009)

    Google Scholar 

  20. Perrotta, A., Capone, A., Romano, G.P.: Heavy particles in the near field of a turbulent jet. Eur. J. Mech.-B/Fluids 83, 156–163 (2020)

    MathSciNet  Google Scholar 

  21. Aliseda, A., Hopfinger, E.J., Lasheras, J.C., Kremer, D., Berchielli, A., Connolly, E.: Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. Int. J. Multiph. Flow 34(2), 161–175 (2008)

    Google Scholar 

  22. Akiki, G., Jackson, T., Balachandar, S.: Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813, 882–928 (2017)

    MathSciNet  Google Scholar 

  23. Ling, Y., Zaleski, S., Scardovelli, R.: Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model. Int. J. Multiph. Flow 76, 122–143 (2015)

    MathSciNet  Google Scholar 

  24. Moore, W., Balachandar, S., Akiki, G.: A hybrid point-particle force model that combines physical and data-driven approaches. J. Comput. Phys. 385, 187–208 (2019)

    MathSciNet  Google Scholar 

  25. Balachandar, S., Liu, K., Lakhote, M.: Self-induced velocity correction for improved drag estimation in Euler–Lagrange point-particle simulations. J. Comput. Phys. 376, 160–185 (2019)

    MathSciNet  Google Scholar 

  26. Liu, K., Lakhote, M., Balachandar, S.: Self-induced temperature correction for inter-phase heat transfer in Euler–Lagrange point-particle simulation. J. Comput. Phys. 396, 596–615 (2019)

    MathSciNet  Google Scholar 

  27. Balachandar, S., Moore, W., Akiki, G., Liu, K.: Toward particle-resolved accuracy in Euler–Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation. Theor. Comput. Fluid Dyn. 34(4), 401–428 (2020)

    MathSciNet  Google Scholar 

  28. Marchioli, C., Soldati, A., Kuerten, J., Arcen, B., Taniere, A., Goldensoph, G., Squires, K., Cargnelutti, M., Portela, L.: Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. Int. J. Multiph. Flow 34(9), 879–893 (2008)

    Google Scholar 

  29. Balachandar, S.: A scaling analysis for point-particle approaches to turbulent multiphase flows. Int. J. Multiph. Flow 35(9), 801–810 (2009)

    Google Scholar 

  30. Mehrabadi, M., Horwitz, J., Subramaniam, S., Mani, A.: A direct comparison of particle-resolved and point-particle methods in decaying turbulence. J. Fluid Mech. 850, 336–369 (2018)

    MathSciNet  Google Scholar 

  31. Gualtieri, P., Picano, F., Sardina, G., Casciola, C.M.: Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 773, 520–561 (2015)

    MathSciNet  Google Scholar 

  32. Horwitz, J., Mani, A.: Accurate calculation of stokes drag for point-particle tracking in two-way coupled flows. J. Comput. Phys. 318, 85–109 (2016)

    MathSciNet  Google Scholar 

  33. Marchioli, C.: Large-eddy simulation of turbulent dispersed flows: a review of modelling approaches. Acta Mech. 228(3), 741–771 (2017)

    Google Scholar 

  34. Vu, L., Machicoane, N., Li, D., Morgan, T.B., Heindel, T.J., Aliseda, A., Desjardins, O.: A computational study of a two-fluid atomizing coaxial jet: validation against experimental back-lit imaging and radiography and the influence of gas velocity and contact line model. Int. J. Multiph. Flow 167, 104520 (2023)

    Google Scholar 

  35. Machicoane, N., Ricard, G., Osuna-Orozco, R., Huck, P.D., Aliseda, A.: Influence of steady and oscillating swirl on the near-field spray characteristics in a two-fluid coaxial atomizer. Int. J. Multiph. Flow 129, 103318 (2020)

    MathSciNet  Google Scholar 

  36. Liu, K., Huck, P., Aliseda, A., Balachandar, S.: Investigation of turbulent inflow specification in Euler–Lagrange simulations of mid-field spray. Phys. Fluids 33(3), 033313 (2021)

    Google Scholar 

  37. Gutiérrez Suárez, J.A., Gómez Mejía, A., Galeano Urueña, C.H.: Low-cost eddy-resolving simulation in the near-field of an annular swirling jet for spray drying applications. ChemEngineering 5(4), 80 (2021)

    Google Scholar 

  38. Sun, Y., Alkhedhair, A.M., Guan, Z., Hooman, K.: Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers. Energy 160, 678–692 (2018)

    Google Scholar 

  39. Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Google Scholar 

  40. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Google Scholar 

  41. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4(3), 633–635 (1992)

    MathSciNet  Google Scholar 

  42. Zonta, F., Marchioli, C., Soldati, A.: Particle and droplet deposition in turbulent swirled pipe flow. Int. J. Multiph. Flow 56, 172–183 (2013)

    Google Scholar 

  43. Zwick, D.: ppiclF: A parallel particle-in-cell library in Fortran. J. Open Source Softw. 4(37), 1400 (2019)

    Google Scholar 

  44. Zwick, D., Balachandar, S.: A scalable Euler–Lagrange approach for multiphase flow simulation on spectral elements. Int. J. High Perform. Comput. Appl. 34(3), 316–339 (2020)

    Google Scholar 

  45. Clift, R., Gauvin, W.: Motion of entrained particles in gas streams. Can. J. Chem. Eng. 49(4), 439–448 (1971)

    Google Scholar 

  46. Pozorski, J., Minier, J.-P.: On the Lagrangian turbulent dispersion models based on the Langevin equation. Int. J. Multiph. Flow 24(6), 913–945 (1998)

    Google Scholar 

  47. Fede, P., Simonin, O., Villedieu, P., Squires, K.: Stochastic modeling of the turbulent subgrid fluid velocity along inertial particle trajectories. In: Proceedings of the Summer Program. Citeseer, pp. 247–258 (2006)

  48. Kitoh, O.: Experimental study of turbulent swirling flow in a straight pipe. J. Fluid Mech. 225, 445–479 (1991)

    Google Scholar 

  49. Wygnanski, I., Fiedler, H.: Some measurements in the self-preserving jet. J. Fluid Mech. 38(3), 577–612 (1969)

    Google Scholar 

  50. Panchapakesan, N.R., Lumley, J.L.: Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197–223 (1993)

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Office of Naval Research (ONR) as part of the Multidisciplinary University Research Initiatives (MURI) Program, under Grant No. N00014-16-1-2617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balachandar.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Liu, K. & Balachandar, S. Investigation of turbulent multiphase swirling jets. Acta Mech 235, 3313–3330 (2024). https://doi.org/10.1007/s00707-024-03857-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-024-03857-7

Navigation