Log in

Review on dynamic models of drilling systems applied in oil and gas industry

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This is a review on models for dynamic analyses of various drilling systems suitable for application in oil and gas industry. The rotary and also rotary–percussive drilling systems, vertical, horizontal and inclined, are physically and mathematically modeled. The basic physical model for analysis of the drilling system is the Timoshenko beam. Torsional, axial, transversal and combined vibrations of the drill string are considered. Special attention is given to bit–rock interaction models. Various mathematical expressions for bit–rock torque and force are suggested. Inclusion of these mathematical models in the drilling system consideration is expected in the future. In the paper advantages and disadvantages of drilling systems are also discussed. Finally, the aim of this review is to give direction for future research and improvement in drilling systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiang, L.: Dynamic force–penetration curves in rock by matching theoretical to experimental wave response. J. Exp. Mech. 2, 167–175 (2004)

    Google Scholar 

  2. Khulief, Y.A., Al-Sulaiman, F.A., Bashmal, S.: Vibration analysis of drillstrings with self-excited stick-slip oscillations. J. Sound Vib. 299(3), 540–558 (2007)

    Google Scholar 

  3. Navarro-Lopez, E., Suarez, R.: Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstrings. In: Proceedings of the 2004 IEEE International Conference on Control Applications, Vol. 8281780, pp. 1454–1460 (2004)

  4. Saldivar, M.B., Mondié, S., Loiseau, J.J.: Reducing stick-slip oscillations in oilwell drillstrings, 6th Int. Conf. on Electrical Engineering, Computing Science and Science and Automatic Control (CCE) Conference Paper, February 2009, Publisher: IEEE, (2009)

  5. Ritto, T.G., Soize, C., Sampaio, R.: Probabilistic model identification of the bit-rock-interaction model uncertainties in nonlinear dynamics of a drill-string. Mech. Res. Commun. 37(6), 584–589 (2010)

    MATH  Google Scholar 

  6. Zhu, X., Tang, L., Yang, Q.: A literature review of approaches for stick-slip vibration, suppression in oilwell drillstring. Adv. Mech. Eng. 2014, 967952 (2014)

    Google Scholar 

  7. Woodhouse, J., Putelat, T., McKay, A.: Are there reliable constitutive laws for dynamic friction? Philosophical Trans A 373, 20140401 (2015)

    Google Scholar 

  8. Ritto, T.G.: Bayesian approach to identify the bit–rock interaction parameters of a drill-string dynamical model. J Braz. Soc. Mech. Sci. Eng. 37, 1173–1182 (2015)

    Google Scholar 

  9. Ritto, T.G., Aguiar, R.R., Hbaieb, S.: Validation of a drill string dynamical model and torsional stability. Meccanica 52(11–12), 2959–2967 (2017)

    MathSciNet  Google Scholar 

  10. Nogueira, B.F., Ritto, T.G.: Stochastic torsional stability of an oil drillstring. Meccanica 53(11–12), 3047–3060 (2018)

    MathSciNet  Google Scholar 

  11. Real, F.F., Batou, A., Ritto, T.G., Desceliers, G., Aguiar, R.R.: Hysteretic bit/rock interaction model to analyze the torsional dynamics of a drill string. Mech. Syst. Signal Proc. 111, 222–233 (2018)

    Google Scholar 

  12. Real, F.F., Batou, A., Ritto, T.G., Desceliers, C.: Stochastic modeling for hysteretic bit–rock interaction of a drill string under torsional vibrations. J. Vib. Cont. 25(10), 1663–1672 (2019)

    MathSciNet  Google Scholar 

  13. Trindade, M.A.: Robust evaluation of stability regions of oil-well drilling systems with uncertain bit-rock nonlinear interaction. J. Sound Vib. 483, 115481 (2020)

    Google Scholar 

  14. Mendil, C., Kidouche, M., Doghmane, M.Z., Benammar, S., Tee, K.F.: Rock–bit interaction effects on high-frequency stick-slip vibration severity in rotary drilling systems. Multidiscip. Model. Mater. Struct. 17(5), 1007–1023 (2021)

    Google Scholar 

  15. Khajiyeva, L.A., Andrianov, I.V., Sabirova, Y.F., Kudaibergenov, A.K.: Analysis of drill-string nonlinear dynamics using the lumped-parameter method. Symmetry 14, 1495 (2022)

    MATH  Google Scholar 

  16. Castello, D.A., Ritto, T.G.: ABC for model selection and parameter estimation of drill-string bit-rock interaction models and stochastic stability. ar**v:2206.14609v2 (2022)

  17. Batako, A.D., Babitsky, V.I., Halliwell, N.A.: Self-excited system of percussive-rotary drilling. J. Sound Vib. 259(1), 97–118 (2003)

    Google Scholar 

  18. Wang, S.Y., Sloan, S.W., Liu, H.Y., Tang, C.A.: Numerical simulation of the rock fragmentation process induced by two drill bits subjected to static and dynamic (impact) loading. Rock Mech. Rock Eng. (2010)

  19. Franca, L.F.P.: A bit-rock interaction model for rotary-percussive drilling. International J. Rock Mech. Min. Sci. 48(5), 827–835 (2011)

    Google Scholar 

  20. Kivade, S.B., Murthy, C.S.N., Vardhan, H.: Experimental investigations on penetration rate of percussive drill. Proc. Earth Planet. Sci. 11, 89–99 (2015)

    Google Scholar 

  21. Liao, M., Liu, Y., Chavez, J.P., Chong, A.S.E., Wiercigroh, M: Dynamics of vibro-impact drilling with linear and nonlinear rock models. Int. J. Mech. Sci. 146 (2018)

  22. Geng, X., Ma, W., Ma, F., Zhou, Z., Liu, Y., Tian, X.: Effects of double damper system’s floating characteristic on percussion performance of hydraulic rock drill, ACMME 2018. IOP Conf. Series: Mat. Sci. Eng. 394, 032060 (2018)

    Google Scholar 

  23. Zhang, X., Luo, Y., Gan, X., Yin, K.: Design and numerical analysis of a large-diameter air reverse circulation drill bit for reverse circulation down-the-hole air hammer drilling. Energy Sci. Eng. 7, 921–929 (2019)

    Google Scholar 

  24. Saai, A., Bjørge, R., Dahl, F., Antonov, M., Kane, A., Diop, J.B., Ojala, N.: Adaptation of laboratory tests for the assessment of wear resistance of drill-bit inserts for rotary-percussive drilling of hard rocks. Wear 456–457, 203366 (2020)

    Google Scholar 

  25. Tjupin, V.N.: Finding velocity of roller-bit and rotary-percussive drilling using the energy conservation law. MIAB. Min. Inf. Analytic. Bull. 6, 76–84 (2020)

    Google Scholar 

  26. Song, X., Amo, O.M., Kane, P.A., Detournay, E.: Influence of weight-on-bit on percussive drilling performance. Rock Mech. Rock Eng. 54, 3491–3505 (2021)

    Google Scholar 

  27. Karpov, V.N., Petreev, A.M.: Determination of efficient rotary percussive drilling techniques for strong rocks. J. Min. Sci. 57(3), 447–458 (2021)

    Google Scholar 

  28. Li, P., Wang, Y., Xu, B., Liu, J., Zhang, W.: Research on impact stress transfer characteristics of lunar rock coring drill. Shock Vib. 2021, 1555295 (2021)

    Google Scholar 

  29. Tian, J., Fan, C., Zhang, T., Zhou, Y.: Rock breaking mechanism in percussive drilling with the effect of high-frequency torsional vibration. Energy Sources A Recov. Util. Environ. Effects 44(1), 2520–2534 (2022)

  30. Toraman, S., Sensogut C.: Rock bit application parameters in geothermal drilling works and cost analysis. In: 4th International Conference Engineering Nature Science, ICENS, Proceedings of Kiev, pp. 350–358 (2018)

  31. Bu, C., Li, X., Sun, L., **a, B.: Arithmetic solution for the axial vibration of drill string coupling with a down-the-hole hammer in rock drilling. J. Vib. Cont. 22(13), 3090–3101 (2016)

    MathSciNet  Google Scholar 

  32. Andrusenko, E.N., Gulyayev, V.I., Khudolii, S.N.: The buckling of a drill string in a curvilinear borehole with axial line imperfections. J. Appl. Math. Mech. 76, 330–336 (2012)

    MATH  Google Scholar 

  33. Zhu, K., Chung, J.: Nonlinear lateral vibrations of a deploying Euler-Bernoulli beam with a spinning motion. Int. J. Mech. Sci. 90, 200–212 (2015)

    Google Scholar 

  34. Yan, Q., Ding, H., Chen, L.: Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Appl. Math. Mech. 36, 971–984 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Bayat, K., Pakar, I., Emadi, A.: Vibration of electrostatically actuated microbeam by means of homotopy perturbation method. Struct. Eng. Mech. 48(6), 823–831 (2013)

    Google Scholar 

  36. Bayat, M., Pakar, I., Bayat, M.: On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams. Steel Compos. Struct. 14(1), 73–83 (2013)

    Google Scholar 

  37. Pakar, I., Bayat, M.: An analytical study of nonlinear vibration οf buckled Euler-Bernoulli beams. Acta Phys. Pol. A 123(1), 48–52 (2013)

    Google Scholar 

  38. Bakhtiari-Nejad, F., Hosseinzadeh, A.: Nonlinear dynamic stability analysis of the coupled axial-torsional motion of the rotary drilling considering the effect of axial rigid-body dynamics. Int. J. Non-Linear Mech. 88, 85–96 (2017)

    Google Scholar 

  39. Lobo, D.M., Ritto, T.G., Castello, D.A., Batou, A.: On the stochastic bit–rock interaction disturbances and its effects on the performance of two commercial control strategies used in drill strings. Mech. Syst. Signal Process. 164, 108229 (2022)

    Google Scholar 

  40. Lobo, D.M., Ritto, T.G., Castello, D.A.: A novel stochastic process to model the variation of rock strength in bit-rock interaction for the analysis of drill-string vibration. Mech. Syst. Signal Process. 141, 106451 (2020)

    Google Scholar 

  41. Detournay, E., Defourny, P.: A phenomenological model for the drilling action of drag bits. Int. J. Rock Mech. Min. Sci. 29, 13–23 (1992)

    Google Scholar 

  42. Deng, P., Zhang, A., Fu, K., Li, H.: Nonlinear vibration of a time-space coupled drill string system based on the surface morphology of rock. J. Sound Vib. 506, 116153 (2021)

    Google Scholar 

  43. Chang, X.P., Li, X., Yang, L., Li, Y.H.: Vibration characteristics of the stepped drill string subjected to gas-structure interaction and spinning motion. J. Sound. Vib. 450, 251–275 (2019)

    Google Scholar 

  44. Tang, S., Liang, Z., Zhao, G.H.: Stability of transverse vibration of drill string conveying drilling fluid. J. Mec. Theor. Appl. 58, 1061–1074 (2020)

    Google Scholar 

  45. Khajiyeva, L., Kudaibergenov, A., Kudaibergenov, A.: The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings. Commun. Nonlinear Sci. Numer. Simul. 59, 565–579 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Khajiyeva, L., Sabirova, Y., Kudaibergenov, A., Kudaibergenov, A.: Application of the lumped-parameter method for modeling nonlinear vibrations of drill strings with stabilizers in a supersonic gas flow. Appl. Math. Model 110, 748–766 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Qi, X., Chen, W., Liu, Y., Tang, X., Shi, S.: A novel well drill assisted with high-frequency vibration using the bending mode. Sensors 18, 1167 (2018)

    Google Scholar 

  48. Leine, R.I., Campen, D.H., Keultjes, W.J.G.: Stick-slip whirl interaction in drillstring dynamics. J. Vib. Acoust. 124, 209–220 (2002)

    Google Scholar 

  49. Leine, R.I., Campen, D.H.: Stick-slip whirl interaction in drillstring dynamics. IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics (eds. G. Rega and F. Vestroni), Springer, pp. 287–296 (2005)

  50. Ritto, T.G., Soize, C., Sampaio, R.: Nonlinear dynamics of a drillstring with uncertain model of the bit-rock interaction. Int. J. Non-Lin. Mech. 44(8), 865–905 (2009)

    Google Scholar 

  51. Paidoussis, M.P., Luu, T.O., Prabhakar, S.: Dynamics of a long tubular cantilever conveying fluid downwards, which then flows upwards around the cantilever as a confined annular flow. J. Fluid Struct. 24(1), 111–128 (2008)

    Google Scholar 

  52. Tucker, R.W., Wang, C.: An integrated model for drill-string dynamics. J. Sound Vib. 224(1), 123–165 (1999)

    Google Scholar 

  53. Zhu, W.C., Tang, C.A.: Micromechanical model for simulating the fracture process of rock. Rock Mech. Rock Eng. 37(1), 25–56 (2004)

    Google Scholar 

  54. Zhu, W.C., Tang, C.A.: Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int. J. Rock Mech. Min. Sci. 43, 236–252 (2006)

    Google Scholar 

  55. Li, S., Tian, S., Li, W., Ling, X., Kapitaniak, M., Vaziri, V.: Numerical study on the elastic deformation and the stress field of brittle rocks under harmonic dynamic load. Energies 13, 851 (2020)

    Google Scholar 

  56. Lazarova, E., Krulakova, M., Krúpa, V., Labas, M., Feriancikova, K.: Regime and rock identification in disintegration by drilling based on vibration signal differentiation. Int. J. Rock Mech. Min. Sci. 149, 104984 (2022)

    Google Scholar 

  57. Zuo, H.Y., Luo, Z.Q., Guan, J.L., Wang, Y.W.: Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine. J. Central South Uni. 21, 1085–1090 (2014)

    Google Scholar 

  58. Archived GEC# Sort and Rock Properties, https://www.fhwa.dot.gov.geotech. 5 May 2023

  59. Afebu, K.O., Liu, Y., Papatheou, E.: Machine learning-based rock characterization models for rotary-percussive drilling. Nonlinear Dyn. 109, 2525–2545 (2022)

    Google Scholar 

  60. Li, S., Yan, L., Li, W., Zhao, H., Ling, X.: Research on energy response characteristics of rock under harmonic vibro-impacting drilling. J. Vib. Eng. Tech. 7, 487–496 (2019)

    Google Scholar 

  61. Xu, H., Li, W., Zhao, H., Xu, S.: Cuttings carrying characteristics of back-reaming pneumatic impactor exhaust during drilling operation. Pet. Explor. Dev. 43(1), 131–137 (2016)

    Google Scholar 

  62. Ritto, T.G., Escalante, M.R., Sampaio, R., Rosales, M.B.: Drill-string horizontal dynamics with uncertainty on the frictional force. J. Sound Vib. 332, 145–153 (2013)

    Google Scholar 

  63. Wang, B., Wang, Z., Ren, F.: Dynamic model and quantitative analysis of stick-slip vibration in horizontal well. Shock Vib. (2020)

  64. Taheran, F., Monfared, V., Daneshmand, S., Abedi, E.: Nonlinear vibration analysis of directional drill string considering effect of drilling mud and weight on bit. JVE J. Vib. Eng 18(2), 1280–1286 (2016)

    Google Scholar 

  65. Guo, X.Q., Liu, J., Wang, J.X., Dai, L.M.: Investigation on axial-lateral-torsion nonlinear coupling vibration characteristic of drilling string in ultra-HPHT curved wells. IOP Conf. Series: Earth and Env. Sci. 861, 052050 (2021)

  66. Wu, Z., Jiang, M., Zheng, W., Gu, Y., Zhai, X., Yang, C.: Modeling and simulation of rock bits based on mega drilling data. J. Phys.: Conference Series 2179, 012013 (2022)

  67. Batako, A.D., Babitsky, V.I., Halliwell, N.A.: Modelling of vibro-impact penetration of self-exciting percussive-rotary drill bit. J. Sound Vib. 271, 209–225 (2004)

    Google Scholar 

  68. Batako, A.D., Babitsky, V.I., Halliwell, N.A.: A self-excited system for percussive-rotary drilling. J. Sound Vib. 259, 97–118 (2003)

    Google Scholar 

  69. Wang, W., Liu, G., Li, J., Zha, C., Lian, W.: Numerical simulation study on rock-breaking process and mechanism of compound impact drilling. Energy Rep. 7, 3137–3148 (2021)

    Google Scholar 

  70. Trawiński, T., Szczygieł, M., Tomas, A.: Electromagnetically excited torsional vibration to rock drilling support. Int. J. Appl. Electromag. Mech. 1, 1–14 (2020)

    Google Scholar 

  71. Mohammadzadeh, M., Shahgholi, M., Arbabtafti, M., Yang, J.M.: Vibration analysis of the fully coupled nonlinear finite element model of composite drill strings. Arch. Appl. Mech. 90, 1373–1398 (2020)

    Google Scholar 

  72. Mohammadzadeha, M., Arbabtafti, M., Shahgholi, M., Yang, J.: Non-linear axial vibrations of composite drill strings considering interaction of roller cone bit and polycrystalline diamond compact bit with rock. IJE trans. A: Basics 34(04), 1016–1023 (2021)

    Google Scholar 

  73. Mohammadzadeha, M., Arbabtafti, M., Shahgholi, M., Yang, J.: Nonlinear vibrations of composite drill strings considering drill string–wellbore contact and bit–rock interaction. Arch. Appl. Mech. 92, 2569–2592 (2022)

    Google Scholar 

  74. Divenyi, S., Savi, M.A., Franca, L.F.P., Weber, H.I.: Nonlinear dynamics and chaos in systems with discontinuous support. Shock Vib 13, 315–326 (2006)

    Google Scholar 

  75. Saldivar, B., Mondié, S., Niculescu, S.I., Mounier, H., Boussaada, I.: A control oriented guided tour in oilwell drilling vibration modeling. Annu. Rev. Control 42, 100–113 (2016)

    Google Scholar 

  76. Ritto, T.G., Beregi, S., Barton, D.A.W.: Reinforcement learning and approximate Bayesian computation for model selection and parameter calibration applied to a nonlinear dynamical system. Mech. Syst. Signal Process. 181, 109485 (2022)

    Google Scholar 

  77. Ritto, T.G., Worden, K., Wagg, D.J., Rochinha, F.A., Gardner, P.: A transfer learning-based digital twin for detecting localized torsional friction in deviated wells. Mech. Syst. Signal Process. 173, 109000 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cveticanin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cveticanin, L., Kraljevic, S. & Cverticanin, D. Review on dynamic models of drilling systems applied in oil and gas industry. Acta Mech 234, 4427–4442 (2023). https://doi.org/10.1007/s00707-023-03621-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03621-3

Navigation