Log in

Curvature arising in shape memory polymer sheets via light absorption

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Morphing is a process that spontaneously creates a three-dimensional (3D) curved surface shape from a two-dimensional flat sheet. It has attracted attention in various applications, ranging from flexible electronics to mechanical metamaterials. Some approaches can realize the morphing of a flat sheet through bending, folding, and buckling. Among these approaches, folding may create more complex 3D structures with a pre-strained shape memory polymer (SMP) sheet than other approaches. However, robust shape control is difficult because localized heating in the active zone when using SMP sheets presents practical challenges. In addition, the folding approach makes the edges sharp and limits the ridge pattern to create a smoothly curved shape. Here, we propose an alternative approach to morph the passive elements in an SMP sheet with two slits that define one active element and two passive elements in the sheet. These elements can buckle when shrinking the active element above the glass transition temperature via light absorption. We predict the curvature of the passive elements as a function of the shrinkage in the active zone and determine an approximate formula to describe the relationship between curvature and shrinkage. We find that the theoretical predictions agree well with the experimental results. Thus, our method could be an alternative approach for morphing techniques exploiting SMP sheets in response to light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gracias, D.H.: Stimuli responsive self-folding using thin polymer films. Curr. Opin. Chem. Eng. 2(1), 112–119 (2013). https://doi.org/10.1016/j.coche.2012.10.003

    Article  Google Scholar 

  2. Liu, Y., Genzer, J., Dickey, M.D.: ”2D or not 2D": shape-programming polymer sheets. Prog. Polym. Sci. 52, 79–106 (2016). https://doi.org/10.1016/j.progpolymsci.2015.09.001

    Article  Google Scholar 

  3. Callens, S.J.P., Zadpoor, A.A.: From flat sheets to curved geometries: origami and kirigami approaches. Mater. Today 21(3), 241–264 (2018). https://doi.org/10.1016/j.mattod.2017.10.004

    Article  Google Scholar 

  4. van Manen, T., Janbaz, S., Zadpoor, A.A.: Programming the shape-shifting of flat soft matter. Mater. Today 21(2), 144–163 (2018). https://doi.org/10.1016/j.mattod.2017.08.026

    Article  Google Scholar 

  5. Holmes, D.P.: Elasticity and stability of shape-shifting structures. Curr. Opin. Colloid Interface Sci. 40(Nature 489 7414 2012), 118–137 (2019). https://doi.org/10.1016/j.cocis.2019.02.008

    Article  Google Scholar 

  6. Thill, C., Etches, J., Bond, I., Potter, K., Weaver, P.: Morphing skins. Aeronaut. J. 112(1129), 117–139 (2008). https://doi.org/10.1017/s0001924000002062

    Article  Google Scholar 

  7. Randall, C.L., Gultepe, E., Gracias, D.H.: Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30(3), 138–146 (2012). https://doi.org/10.1016/j.tibtech.2011.06.013

    Article  Google Scholar 

  8. Tolley, M.T., Felton, S.M., Aukes, D., Rus, D., Wood, R.J.: Self-folding origami: shape memory composites activated by uniform heating. Smart Mater. Struct. 23(9), 094006 (2014). https://doi.org/10.1088/0964-1726/23/9/094006

    Article  Google Scholar 

  9. Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., Lewis, J.A.: Biomimetic 4D printing. Nat. Mater. 15(4), 413–418 (2016). https://doi.org/10.1038/nmat4544

    Article  Google Scholar 

  10. Gao, B., Yang, Q., Zhao, X., **, G., Ma, Y., Xu, F.: 4D bioprinting for biomedical applications. Trends Biotechnol. 34(9), 746–756 (2016). https://doi.org/10.1016/j.tibtech.2016.03.004

    Article  Google Scholar 

  11. Gracias, D.H., Tien, J., Breen, T.L., Hsu, C., Whitesides, G.M.: Forming electrical networks in three dimensions by self-assembly. Science 289(5482), 1170–1172 (2000). https://doi.org/10.1126/science.289.5482.1170

    Article  Google Scholar 

  12. Rogers, J.A., Huang, Y., Schmidt, O.G., Gracias, D.H.: Origami MEMS and NEMS. MRS Bull. 41(02), 123–129 (2016). https://doi.org/10.1557/mrs.2016.2

    Article  Google Scholar 

  13. McEvoy, M.A., Correll, N.: Materials that couple sensing, actuation, computation, and communication. Science 347(6228), 1261689 (2015). https://doi.org/10.1126/science.1261689

    Article  Google Scholar 

  14. van Rees, W.M., Vouga, E., Mahadevan, L.: Growth patterns for shape-shifting elastic bilayers. Proc. Natl. Acad. Sci. 114(44), 11597–11602 (2017). https://doi.org/10.1073/pnas.1709025114

    Article  Google Scholar 

  15. van Manen, T., Janbaz, S., Zadpoor, A.A.: Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater. Horiz. 4(6), 1064–1069 (2017). https://doi.org/10.1039/C7MH00269F

    Article  Google Scholar 

  16. Erb, R.M., Sander, J.S., Grisch, R., Studart, A.R.: Self-sha** composites with programmable bioinspired microstructures. Nat. Commun. 4(1), 1712 (2013). https://doi.org/10.1038/ncomms2666

    Article  Google Scholar 

  17. White, T.J., Broer, D.J.: Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Publ. Group 14(11), 1087–1098 (2015). https://doi.org/10.1038/nmat4433

    Article  Google Scholar 

  18. Kotikian, A., Truby, R.L., Boley, J.W., White, T.J., Lewis, J.A.: 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30(10), 1706164 (2018). https://doi.org/10.1002/adma.201706164

    Article  Google Scholar 

  19. Kotikian, A., McMahan, C., Davidson, E.C., Muhammad, J.M., Weeks, R.D., Daraio, C., Lewis, J.A.: Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 4(33), 7044 (2019). https://doi.org/10.1126/scirobotics.aax7044

    Article  Google Scholar 

  20. Ford, M.J., Ambulo, C.P., Kent, T.A., Markvicka, E.J., Pan, C., Malen, J., Ware, T.H., Majidi, C.: A multifunctional shape-morphing elastomer with liquid metal inclusions. Proc. Natl. Acad. Sci. 116(43), 21438–21444 (2019). https://doi.org/10.1073/pnas.1911021116

    Article  Google Scholar 

  21. **ao, Y.-Y., Jiang, Z.-C., Tong, X., Zhao, Y.: Biomimetic locomotion of electrically powered “Janus’’ soft robots using a liquid crystal polymer. Adv. Mater. 31(36), 1903452 (2019). https://doi.org/10.1002/adma.201903452

    Article  Google Scholar 

  22. Wu, J., Yuan, C., Ding, Z., Isakov, M., Mao, Y., Wang, T., Dunn, M.L., Qi, H.J.: Multi-shape active composites by 3D printing of digital shape memory polymers. Sci. Rep. 6(1), 24224 (2016). https://doi.org/10.1038/srep24224

    Article  Google Scholar 

  23. Mao, Y., Ding, Z., Yuan, C., Ai, S., Isakov, M., Wu, J., Wang, T., Dunn, M.L., Qi, H.J.: 3D printed reversible shape changing components with stimuli responsive materials. Sci. Rep. 6(1), 24761 (2016). https://doi.org/10.1038/srep24761

    Article  Google Scholar 

  24. Peraza-Hernandez, E.A., Hartl, D.J., Malak, R.J., Jr., Lagoudas, D.C.: Origami-inspired active structures: a synthesis and review. Smart Mater. Struct. 23(9), 094001 (2014). https://doi.org/10.1088/0964-1726/23/9/094001

    Article  Google Scholar 

  25. Lauff, C., Simpson, T.W., Frecker, M., Ounaies, Z., Ahmed, S., von Lockette, P., Strzelec, R., Sheridan, R., Lien, J.-M.: Differentiating bending from folding in origami engineering using active materials. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 05–080400508040 (2014). https://doi.org/10.1115/detc2014-34702

  26. Liu, Y., Liu, Y., Boyles, J.K., Genzer, J., Dickey, M.D.: Self-folding of polymer sheets using local light absorption. Soft Matter 8(6), 1764–1769 (2012). https://doi.org/10.1039/c1sm06564e

    Article  Google Scholar 

  27. Liu, Y., Mailen, R., Zhu, Y., Dickey, M.D., Genzer, J.: Simple geometric model to describe self-folding of polymer sheets. Phys. Rev. E 89(4), 042601–8 (2014). https://doi.org/10.1103/physreve.89.042601

    Article  Google Scholar 

  28. Na, J.-H., Na, J.-H., Evans, A.A., Evans, A.A., Bae, J., Bae, J., Chiappelli, M.C., Chiappelli, M.C., Santangelo, C.D., Lang, R.J., Lang, R.J., Hull, T.C., Hull, T.C., Hayward, R.C.: Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27(1), 79–85 (2014). https://doi.org/10.1002/adma.201403510

    Article  Google Scholar 

  29. Mailen, R.W., Liu, Y., Dickey, M.D., Zikry, M., Genzer, J.: Modelling of shape memory polymer sheets that self-fold in response to localized heating. Soft Matter 11(39), 7827–7834 (2015). https://doi.org/10.1039/c5sm01681a

    Article  Google Scholar 

  30. Davis, D., Mailen, R., Genzer, J., Dickey, M.D.: Self-folding of polymer sheets using microwaves and graphene ink. RSC Adv. 5(108), 89254–89261 (2015). https://doi.org/10.1039/c5ra16431a

    Article  Google Scholar 

  31. Hubbard, A.M., Mailen, R.W., Zikry, M.A., Dickey, M.D.: Controllable curvature from planar polymer sheets in response to light. Soft Matter 13(12), 2299–2308 (2017). https://doi.org/10.1039/c7sm00088j

    Article  Google Scholar 

  32. Rus, D., Tolley, M.T.: Design, fabrication and control of origami robots. Nat. Rev. Mater. (2018). https://doi.org/10.1038/s41578-018-0009-8

    Article  Google Scholar 

  33. Felton, S.M., Tolley, M.T., Shin, B., Onal, C.D., Demaine, E.D., Rus, D., Wood, R.J.: Self-folding with shape memory composites. Soft Matter 9(32), 7688–8 (2013). https://doi.org/10.1039/c3sm51003d

    Article  Google Scholar 

  34. Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R.: A method for building self-folding machines. Science 345(6197), 644–646 (2014). https://doi.org/10.1126/science.1252610

    Article  Google Scholar 

  35. Timoshenko, S., Gere, J.M.: Theory of Elastic Stability, 2nd edn. Dover Publications, Mineola (1961)

    Google Scholar 

  36. Mikata, Y.: Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta Mech. 190(1–4), 133–150 (2007). https://doi.org/10.1007/s00707-006-0402-z

    Article  MATH  Google Scholar 

  37. Bigoni, D., Bosi, F., Misseroni, D., Dal Corso, F., Noselli, G.: New phenomena in nonlinear elastic structures: from tensile buckling to configurational forces. In: Bigoni, D. (ed.) Extremely Deformable Structures, pp. 55–135. Springer, Vienna (2015). https://doi.org/10.1007/978-3-7091-1877-1_2

    Chapter  Google Scholar 

  38. Wagner, T.J.W., Vella, D.: The ‘sticky elastica’: delamination blisters beyond small deformations. Soft Matter 9(4), 1025–1030 (2013). https://doi.org/10.1039/c2sm26916c

    Article  Google Scholar 

  39. Wilt, J.K., Yang, C., Gu, G.X.: Accelerating auxetic metamaterial design with deep learning. Adv. Eng. Mater. 22(5), 1901266 (2020). https://doi.org/10.1002/adem.201901266

    Article  Google Scholar 

  40. Mao, Y., He, Q., Zhao, X.: Designing complex architectured materials with generative adversarial networks. Sci. Adv. 6(17), 4169 (2020). https://doi.org/10.1126/sciadv.aaz4169

    Article  Google Scholar 

  41. Hanakata, P.Z., Cubuk, E.D., Campbell, D.K., Park, H.S.: Accelerated search and design of stretchable graphene Kirigami using machine learning. Phys. Rev. Lett. 121(25), 255304 (2018). https://doi.org/10.1103/PhysRevLett.121.255304

    Article  Google Scholar 

  42. Hanakata, P.Z., Cubuk, E.D., Campbell, D.K., Park, H.S.: Forward and inverse design of Kirigami via supervised autoencoder. Phys. Rev. Res. 2(4), 042006 (2020). https://doi.org/10.1103/PhysRevResearch.2.042006

    Article  Google Scholar 

  43. Forte, A.E., Hanakata, P.Z., **, L., Zari, E., Zareei, A., Fernandes, M.C., Sumner, L., Alvarez, J., Bertoldi, K.: Inverse design of inflatable soft membranes through machine learning. Adv. Func. Mater. 32(16), 2111610 (2022). https://doi.org/10.1002/adfm.202111610

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP18K03838.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Morimoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimoto, T., Ashida, F., Inoue, N. et al. Curvature arising in shape memory polymer sheets via light absorption. Acta Mech 233, 5403–5413 (2022). https://doi.org/10.1007/s00707-022-03400-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03400-6

Navigation