Log in

Development of a small-deformation material model for an isotropic magneto-active elastomer

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present work, a continuum-based material model has been developed for an isotropic magneto-active elastomer (MAE) to investigate its behavior under small deformations. Firstly, the governing magneto-mechanical equations are formulated for the flexible magneto-active medium. Subsequently, a linearization scheme is used to construct constitutive equations for the small-deformation analysis of MAEs by expressing the magnetic parameters by two constituents involving the rigid-body and perturbation states. The material constants of the constitutive model are estimated from the experiments performed on a right cylindrical sample of a magneto-active material comprising the elastic matrix with 15% volume fraction of carbonyl iron particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Toupin, R.: The elastic dielectric. J. Ration. Mech. Anal. 5(6), 849–915 (1956)

    MathSciNet  MATH  Google Scholar 

  2. Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/I. Springer, Berlin (1960)

    Google Scholar 

  3. Toupin, R.A.: A dynamical theory of elastic dielectrics. Int. J. Eng. Sci. 1(1), 101–126 (1963)

    MathSciNet  Google Scholar 

  4. Tiersten, H.F.: Coupled magnetomechanical equations for magnetically saturated insulators. J. Math. Phys. 5(9), 1298–1318 (1964)

    MathSciNet  MATH  Google Scholar 

  5. Tiersten, H.F.: Variational principle for saturated magnetoelastic insulators. J. Math. Phys. 6(5), 779–787 (1965)

    MathSciNet  Google Scholar 

  6. Jordan, N.F., Eringen, A.C.: On the static nonlinear theory of electromagnetic thermoelastic solids—II. Int. J. Eng. Sci. 2(1), 97–114 (1964)

    MathSciNet  MATH  Google Scholar 

  7. Brown, W.F.: Magnetoelastic Interactions. Springer, Berlin (1966)

    Google Scholar 

  8. Maugin, G.A., Eringen, A.C.: Deformable magnetically saturated media. I. Field equations. J. Math. Phys. 13(2), 143–155 (1972)

    Google Scholar 

  9. Maugin, G.A., Eringen, A.C.: Deformable magnetically saturated media. II. Constitutive theory. J. Math. Phys. 13(9), 1334–1347 (1972)

    Google Scholar 

  10. Tiersten, H.F., Tsai, C.F.: On the interaction of the electromagnetic field with heat conducting deformable insulators. J. Math. Phys. 13(3), 361–378 (1972)

    Google Scholar 

  11. Pao, Y.-H., Hutter, K.: Electrodynamics for moving elastic solids and viscous fluids. Proc. IEEE 63(7), 1011–1021 (1975)

    MathSciNet  Google Scholar 

  12. Pao, Y.-H.: Electromagnetic forces in deformable continua. In: Nemat-Nasser, S. (ed.) Mechanics Today, pp. 209–305. Pergamon Press, Inc., New York (1978)

    Google Scholar 

  13. Dorfmann, A., Ogden, R.W.: Nonlinear magnetoelastic deformations. Q. J. Mech. Appl. Math. 57(4), 599–622 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Dorfmann, A., Ogden, R.W.: Nonlinear magnetoelastic deformations of elastomers. Acta Mech. 167(1–2), 13–28 (2004)

    MATH  Google Scholar 

  15. Dorfmann, A., Ogden, R.W.: Some problems in nonlinear magnetoelasticity. Z. Angew. Math. Phys. 56(4), 718–745 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Bustamante, R.: Mathematical modelling of boundary conditions for magneto-sensitive elastomers: variational formulations. J. Eng. Math. 64(3), 285–301 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Bustamante, R.: Transversely isotropic nonlinear magneto-active elastomers. Acta Mech. 210(3–4), 183–214 (2009)

    MATH  Google Scholar 

  18. Bustamante, R., Dorfmann, A., Ogden, R.W.: Universal relations in isotropic nonlinear magnetoelasticity. Q. J. Mech. Appl. Mech. 59(3), 435–450 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Brigadnov, I.A., Dorfmann, A.: Mathematical modeling of magneto-sensitive elastomers. Int. J. Solids Struct. 40(18), 4659–4674 (2003)

    MATH  Google Scholar 

  20. Kankanala, S.V., Triantafyllidis, N.: On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids 52(12), 2869–2908 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I Foundations and Solid Media. Springer, New York (1990)

    Google Scholar 

  22. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  23. Kovetz, A.: Electromagnet Theory. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  24. Pao, Y.-H., Yeh, C.-S.: A linear theory for soft ferromagnetic elastic solids. Int. J. Eng. Sci. 11(4), 415–436 (1973)

    MATH  Google Scholar 

  25. Hutter, K., Pao, Y.H.: A dynamic theory for magnetizable elastic solids with thermal and electrical conduction. J. Elast. 4(2), 89–114 (1974)

    MATH  Google Scholar 

  26. Eringen, A.C.: Theory of electromagnetic elastic plates. Int. J. Eng. Sci. 27(4), 363–375 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Dunkin, J.W., Eringen, A.C.: On the propagation of waves in an electromagnetic elastic solid. Int. J. Eng. Sci. 1(4), 461–495 (1963)

    MathSciNet  MATH  Google Scholar 

  28. Jolly, M.R., Carlson, J.D., Munoz, B.C.: A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5(5), 607–614 (1996)

    Google Scholar 

  29. Bellan, C., Bossis, G.: Field dependence of viscoelastic properties of Mr Elastomers. Int. J. Mod. Phys. B 16(17n18), 2447–2453 (2012)

    Google Scholar 

  30. Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22(6), 677–680 (2003)

    Google Scholar 

  31. Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Testing 22(3), 245–251 (2003)

    Google Scholar 

  32. Kallio, M.: The Elastic and Dam** Properties of Magnetorheological Elastomers. VTT Publications, New York (2005)

    Google Scholar 

  33. Danas, K., Kankanala, S.V., Triantafyllidis, N.: Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 60(1), 120–138 (2012)

    Google Scholar 

  34. Schubert, G., Harrison, P.: Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations. J. Magn. Magn. Mater. 404, 205–214 (2016)

    Google Scholar 

  35. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, New York (2010)

    Google Scholar 

  36. Batra, R.C.: Elements of continuum mechanics. AIAA education series (2006)

  37. Eringen, A.C., Suhubi, E.S.: Elastodynamics, Linear Theory, vol. 2. Academic Press, London (1975)

    MATH  Google Scholar 

  38. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill Book Company, New York (1946)

    Google Scholar 

Download references

Acknowledgements

Support from the National Science and Engineering Research Council of Canada (NSERC) (Grant No. RGPIN/6696-2016) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Sedaghati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, A., Sedaghati, R. & Rakheja, S. Development of a small-deformation material model for an isotropic magneto-active elastomer. Acta Mech 231, 2287–2301 (2020). https://doi.org/10.1007/s00707-020-02647-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02647-1

Navigation