Log in

Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The large deformation and stresses (normal and shear) of the graded nanotube-reinforced sandwich structure are numerically investigated under the influence of mechanical loading and a uniform temperature field. A higher-order nonlinear finite element model in conjunction with the direct iterative technique has been adopted for the solution purpose. Also, the structural distortion was modeled via the full-scale geometrical nonlinearity (Green–Lagrange strain) in the framework of higher-order displacement functions. Further, to replicate the actual operational conditions, the temperature-dependent properties of the individual material constituents (i.e., carbon nanotube and polymer) have been implemented in the current material modeling steps. The final deflections and stress values are evaluated via an own developed computer code using the currently proposed nonlinear mathematical formulation. The model accuracy and solution stability are checked by comparing the responses (deflection and stress) with available published results. Lastly, a variety of numerical examples is solved for different design parameters and deliberated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  2. Cividanes, L.S., Simonetti, E.A.N., Moraes, M.B., Fernandes, F.W., Thim, G.P.: Influence of carbon nanotubes on epoxy resin cure reaction using different techniques: a comprehensive review. Polym. Eng. Sci. 54, 2461–2469 (2014). https://doi.org/10.1002/pen.23775

    Article  Google Scholar 

  3. Esteva, M., Spansos, P.D.: Effective elastic properties of nanotube reinforced composites with slightly weakened interfaces. J. Mech. Mater. Struct. 4, 887–900 (2009). https://doi.org/10.2140/jomms.2009.4.887

    Article  Google Scholar 

  4. Li, C., Chou, T.W.: Elastic properties of single-walled carbon nanotubes in transverse directions. Phys. Rev. B 69, 073401-1–073401-3 (2004). https://doi.org/10.1103/PhysRevB.69.073401

    Article  Google Scholar 

  5. Kumar, P., Srinivas, J.: Numerical evaluation of effective elastic properties of CNT-reinforced polymers for interphase effects. Comput. Mater. Sci. 88, 139–144 (2014). https://doi.org/10.1016/j.commatsci.2014.03.002

    Article  Google Scholar 

  6. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015). https://doi.org/10.1016/j.compstruct.2014.09.041

    Article  Google Scholar 

  7. Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009). https://doi.org/10.1016/j.compstruct.2009.04.026

    Article  Google Scholar 

  8. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton London New York Washington, DC (2004)

    Book  Google Scholar 

  9. Kaci, A., Tounsi, A., Bakhti, K., Bedia, E.A.A.: Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates. Steel Compos. Struct. 12, 491–504 (2012). https://doi.org/10.12989/scs.2012.12.6.491

    Article  Google Scholar 

  10. Shen, H.S., Zhang, C.L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31, 3403–3411 (2010). https://doi.org/10.1016/j.matdes.2010.01.048

    Article  Google Scholar 

  11. Heydari, M.M., Hafizi Bidgoli, A., Golshani, H.R., Beygipoor, G., Davoodi, A.: Nonlinear bending analysis of functionally graded CNT-reinforced composite Mindlin polymeric temperature-dependent plate resting on orthotropic elastomeric medium using GDQM. Nonlinear Dyn. 79, 1425–1441 (2015). https://doi.org/10.1007/s11071-014-1751-0

    Article  Google Scholar 

  12. Lei, Z.X., Liew, K.M., Yu, J.L.: Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method. Comput. Methods Appl. Mech. Eng. 256, 189–199 (2013). https://doi.org/10.1016/j.cma.2012.12.007

    Article  MathSciNet  MATH  Google Scholar 

  13. Heshmati, M., Yas, M.H.: Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads. Mater. Des. 49, 894–904 (2013). https://doi.org/10.1016/j.matdes.2013.01.073

    Article  Google Scholar 

  14. Yas, M.H., Heshmati, M.: Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl. Math. Model. 36, 1371–1394 (2012). https://doi.org/10.1016/j.apm.2011.08.037

    Article  MathSciNet  MATH  Google Scholar 

  15. **ao, T., Liu, J., **ong, H.: Effects of different functionalization schemes on the interfacial strength of carbon nanotube polyethylene composite. Acta Mech. Solida Sin. 28, 277–284 (2015). https://doi.org/10.1016/S0894-9166(15)30014-8

    Article  Google Scholar 

  16. Mirzaei, M., Kiani, Y.: Thermal buckling of temperature dependent FG-CNT reinforced composite plates. Meccanica 51, 2185–2201 (2016). https://doi.org/10.1007/s11012-015-0348-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos. Part B Eng. 89, 187–218 (2016). https://doi.org/10.1016/j.compositesb.2015.11.016

    Article  Google Scholar 

  18. Mehar, K., Panda, S.K.: Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load. J. Aerosp. Eng. 30, 04016100 (1–12) (2016).https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706.

    Article  Google Scholar 

  19. Zhang, L.W., Lei, Z.X., Liew, K.M., Yu, J.L.: Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels. Comput. Methods Appl. Mech. Eng. 273, 1–18 (2014). https://doi.org/10.1016/j.cma.2014.01.024

    Article  MATH  Google Scholar 

  20. Szekrényes, A.: Application of Reddy’s third-order theory to delaminated orthotropic composite plates. Eur. J. Mech. A/Solids. 43, 9–24 (2014). https://doi.org/10.1016/j.euromechsol.2013.08.004

    Article  MathSciNet  MATH  Google Scholar 

  21. Szekrényes, A.: Stress and fracture analysis in delaminated orthotropic composite plates using third-order shear deformation theory. Appl. Math. Model. 38, 3897–3916 (2014). https://doi.org/10.1016/j.apm.2013.11.064

    Article  MathSciNet  MATH  Google Scholar 

  22. Kolahchi, R., Moniri Bidgoli, A.M.: Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes. Appl. Math. Mech. Engl. Ed. 37, 265–274 (2016). https://doi.org/10.1007/s10483-016-2030-8

    Article  MathSciNet  Google Scholar 

  23. Zhang, L.W.: Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates with internal column supports. J. Model. Mech. Mater. 1, 20160154 (2017). https://doi.org/10.1515/jmmm-2016-0154

    Article  Google Scholar 

  24. Wang, Z.X., Shen, H.S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. Part B Eng. 43, 411–421 (2012). https://doi.org/10.1016/j.compositesb.2011.04.040

    Article  Google Scholar 

  25. Natarajan, S., Haboussi, M., Manickam, G.: Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite face sheets. Compos. Struct. 113, 197–207 (2014). https://doi.org/10.1016/j.compstruct.2014.03.007

    Article  Google Scholar 

  26. Kiani, Y.: Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. J. Therm. Stress. 39, 1098–1110 (2016). https://doi.org/10.1080/01495739.2016.1192856

    Article  Google Scholar 

  27. Arani, A.G., Jafari, G.S.: Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic Pasternak medium using DQM. Appl. Math. Mech. Engl. Ed. 36, 1033 (2015). https://doi.org/10.1007/s10483-015-1969-7

    Article  MathSciNet  MATH  Google Scholar 

  28. Chandrashekhar, M., Ganguli, R.: Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties. Int. J. Mech. Sci. 52, 874–891 (2010). https://doi.org/10.1016/j.ijmecsci.2010.03.002

    Article  Google Scholar 

  29. Moradi-Dastjerdi, R., Payganeh, G., Malek-Mohammadi, H., Dastjerdi, R.M., Payganeh, G., Mohammadi, H.M.: Free vibration analyses of functionally graded CNT reinforced nanocomposite sandwich plates resting on elastic foundation. J. Solid Mech. 7, 158–172 (2015)

    Google Scholar 

  30. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I., Addabedia, E.A.: Free vibration of functionally graded sandwich plates using four-variable refined plate theory. Appl. Math. Mech. English Ed. 32, 925–942 (2011). https://doi.org/10.1007/s10483-011-1470-9

    Article  MathSciNet  Google Scholar 

  31. Kiani, Y., Eslami, M.R.: Thermal buckling and post-buckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation. Arch. Appl. Mech. 82, 891–905 (2012). https://doi.org/10.1007/s00419-011-0599-8

    Article  MATH  Google Scholar 

  32. Kavalur, P., Jeyaraj, P., Babu, G.R.: Static behaviour of visco-elastic sandwich plate with nano-composite facings under mechanical load. Procedia Mater. Sci. 5, 1376–1384 (2014). https://doi.org/10.1016/j.mspro.2014.07.455

    Article  Google Scholar 

  33. Mehar, K., Panda, S.K.: Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method. Polym. Compos. (2017). https://doi.org/10.1002/pc.24266

    Article  Google Scholar 

  34. Ghannadpour, S.A.M., Alinia, M.M.: Large deflection behavior of functionally graded plates under pressure loads. Compos. Struct. 75, 67–71 (2006). https://doi.org/10.1016/j.compstruct.2006.04.004

    Article  Google Scholar 

  35. Ovesy, H.R., Ghannadpour, S.A.M.: Large deflection finite strip analysis of functionally graded plates under pressure loads. Int. J. Struct. Stab. Dyn. 7, 193–211 (2007). https://doi.org/10.1142/S0219455407002241

    Article  Google Scholar 

  36. Alipour, M.M.: Effects of elastically restrained edges on FG sandwich annular plates by using a novel solution procedure based on layerwise formulation. Arch. Civ. Mech. Eng. 16, 678–694 (2016). https://doi.org/10.1016/j.acme.2016.04.015

    Article  Google Scholar 

  37. Alipour, M.M., Shariyat, M.: An analytical global-local Taylor transformation-based vibration solution for annular FGM sandwich plates supported by nonuniform elastic foundations. Arch. Civ. Mech. Eng. 14, 6–24 (2014). https://doi.org/10.1016/j.acme.2013.05.006

    Article  Google Scholar 

  38. Li, H., Zhu, X., Mei, Z., Qiu, J., Zhang, Y.: Bending of orthotropic sandwich plates with a functionally graded core subjected to distributed loadings. Acta Mech. Solida Sin. 26, 292–301 (2013). https://doi.org/10.1016/S0894-9166(13)60027-0

    Article  Google Scholar 

  39. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 1450–1460 (2012). https://doi.org/10.1016/j.compstruct.2011.11.010

    Article  Google Scholar 

  40. Shen, H.S., **ang, Y.: Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng. Struct. 56, 698–708 (2013). https://doi.org/10.1016/j.engstruct.2013.06.002

    Article  Google Scholar 

  41. Kar, V.R., Panda, S.K.: Large deformation bending analysis of functionally graded spherical shell using FEM. Struct. Eng. Mech. 53, 661–679 (2015). https://doi.org/10.12989/sem.2015.53.4.661

    Article  Google Scholar 

  42. Wang, Z.X., Shen, H.S.: Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dyn. 70, 735–754 (2012). https://doi.org/10.1007/s11071-012-0491-2

    Article  MathSciNet  Google Scholar 

  43. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis, vol. 4. Wiley, Singapore (2009)

    Google Scholar 

  44. Mehar, K., Panda, S.K.: Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field. Compos. Struct. 143, 336–346 (2016). https://doi.org/10.1016/j.compstruct.2016.02.038

    Article  Google Scholar 

  45. Moita, J.S., Araujo, A.L., Soares, C.M.M., Soares, C.A.M., Herskovits, J.: Geometrically nonlinear analysis of sandwich structures. Compos. Struct. 156, 135–144 (2016). https://doi.org/10.1016/j.compstruct.2016.01.018

    Article  Google Scholar 

  46. Madhukar, S., Singha, M.K.: Geometrically nonlinear finite element analysis of sandwich plates using normal deformation theory. Compos. Struct. 97, 84–90 (2013). https://doi.org/10.1016/j.compstruct.2012.10.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} \left\{ \lambda \right\}&=\left\{ {u v w} \right\} ^{T}, \nonumber \\ \left\{ {\lambda _0 } \right\}&=\left[ {u_0 \qquad v_0 \qquad w_{0} \qquad \varphi _x \qquad \varphi _y \qquad \psi _x \qquad \psi _y \qquad \theta _y \qquad \theta _x } \right] ^{T}, \nonumber \\ [H]&=\left[ {{\begin{array}{lllllllll} 1&{}\qquad 0&{}\qquad 0&{}\qquad z&{}\qquad 0&{}\qquad {z^{2}}&{}\qquad 0&{}\qquad {z^{3}}&{}\qquad 0 \\ 0&{}\qquad 1&{}\qquad 0&{}\qquad 0&{}\qquad z&{}\qquad 0&{}\qquad {z^{2}}&{}\qquad 0&{}\qquad {z^{3}} \\ 0&{}\qquad 0&{}\qquad 1&{}\qquad 0&{}\qquad 0&{}\qquad 0&{}\qquad 0&{}\qquad 0&{}\qquad 0 \\ \end{array} }} \right] , \end{aligned}$$
$$\begin{aligned}&\varepsilon _x^0 =u_{,x} , \varepsilon _y^0 =v_{,y} , \gamma _{xy}^0 =u_{,y} +v_{,x} , \gamma _{xz}^0 =\varphi _x +w_{,x} , \gamma _{yz}^0 =\varphi _y +w_{,y} , k_x^1 =\varphi _{x,x} , k_y^1 =\varphi _{y,y} ,\\&k_{xy}^1 =\varphi _{x,y}+\varphi _{y,x} , k_{zx}^1 =2\psi _x , k_{yz}^1 =2\psi _y , k_x^2 =\psi _{x,x} , k_y^2 =\psi _{y,y} , k_{xy}^2=\psi _{x,y} +\psi _{y,x} ,\\&k_{zx}^2 =3\theta _x , k_{yz}^2 =3\theta _y , k_x^3 =\theta _{x,x} , k_y^3 =\theta _{y,y} ,\\&k_{xy}^3 =\theta _{x,y} +\theta _{y,x} , \\&k_{zx}^3 =-\theta _x , \\&k_{yz}^3 =-\theta _y , \\&\varepsilon _x^4 =\left[ {\left( {u_{,x} } \right) ^{2}+\left( {v_{,x} } \right) ^{2}+\left( {w_{,x} } \right) ^{2}} \right] ,\\&\left( {\varepsilon _y^4 } \right) =\left[ {\left( {u_{,y} } \right) ^{2}+\left( {v_{,y} } \right) ^{2}+\left( {w_{,y} } \right) ^{2}} \right] , \\&\gamma _{xy}^4 =2\left[ {u_{,x} u_{,y} +v_{,x} v_{,y} +w_{,x} w_{,y} } \right] , \\&\gamma _{zx}^4 =2\left[ {\varphi _x u_{,x} +\varphi _y v_{,x} } \right] , \\&\gamma _{zx}^4 =2\left[ {\varphi _x u_{,x} +\varphi _y v_{,x} } \right] , \\&\gamma _{zx}^4 =2\left[ {\varphi _x u_{,x} +\varphi _y v_{,x} } \right] ,\\&\gamma _{yz}^4 =2\left[ {\varphi _x u_{,y} +\varphi _y v_{,y} } \right] , \\&\left( {k_x^5 } \right) =2\left[ {\varphi _{x,x} u_{,x} +\varphi _{y,x} v_{,x} } \right] , \\&\left( {k_y^5 } \right) =2\left[ {\varphi _{x,y} u_{,y} +\varphi _{y,y} v_{,y} } \right] , \\&\left( {k_{xy}^5 } \right) =2\left[ {\varphi _{x,y} u_{,x} +\varphi _{x,x} u_{,y} +2\varphi _{y,x} v_{,y} +\varphi _{y,y} v_{,x} } \right] , \\&\left( {k_{zx}^5 } \right) =2\left[ {\varphi _x \varphi _{x,x} +2\psi _x u_{,x} +\varphi _y \varphi _{y,x} +2\psi _y v_{,x} } \right] , \\&\left( {k_{yz}^5 } \right) =2\left[ {\varphi _x \varphi _{x,y} +2\psi _x u_{,y} +\varphi _y \varphi _{y,y} +2\psi _y v_{,y} } \right] , \left( {k_x^6 } \right) =\left[ {\varphi _{x,x}^2 +\varphi _{y,x}^2 +2\psi _{x,x} u_{,x} +2\psi _{y,x} v_{,x} } \right] , \\&\left( {k_y^6 } \right) =\left[ {\varphi _{x,y}^2 +\varphi _{y,y}^2 +2\psi _{x,y} u_{,y} +2\psi _{y,y} v_{,y} } \right] , \\&\left( {k_{xy}^6 } \right) =2\left[ {\varphi _{x,x} \varphi _{x,x} +\varphi _{y,x} \varphi _{y,y} +\psi _{x,x} u_{,y} +\psi _{x,x} u_{,y} +\psi _{y,x} v_{,y} +\psi _{y,y} v_{,x} } \right] , \\&\left( {k_{zx}^6 } \right) =2\left[ {\psi _{x,x} \varphi _x +\psi _{y,x} \varphi _y +2\varphi _{x,x} \psi _x +2\varphi _{y,x} \psi _y +3u_{,x} \theta _x +3v_{,x} \theta _y } \right] , \\&\left( {k_{yz}^6 } \right) =2\left[ {\psi _{x,y} \varphi _x +\psi _{y,y} \varphi _y +2\varphi _{x,y} \psi _x +2\varphi _{y,y} \psi _y +3u_{,y} \theta _x +3v_{,y} \theta _y } \right] \quad \\&\left( {k_x^7 } \right) =2\left[ {u_{,x} \theta _{x,x} +v_{,x} \theta _{y,x} +\varphi _{x,x} \psi _{x,x} +\varphi _{y,x} \psi _{y,x} } \right] , \\&\left( {k_y^7 } \right) =2\left[ {u_{,y} \theta _{x,y} +v_{,y} \theta _{y,y} +\varphi _{x,y} \psi _{x,y} +\varphi _{y,y} \psi _{y,y} } \right] , \\&\left( {k_{xy}^7 } \right) =2\left[ {u_{,x} \theta _{x,y} +u_{,y} \theta _{x,x} +v_{,x} \theta _{y,y} +v_{,y} \theta _{y,x} +\varphi _{x,x} \psi _{x,y} +\varphi _{x,y} \psi _{x,x} +\varphi _{y,x} \psi _{y,y} +\varphi _{y,y} \psi _{y,x} } \right] , \\&\left( {k_{zx}^7 } \right) =2\left[ {\theta _{x,x} \varphi _x +\theta _{y,x} \varphi _y +2\psi _{x,x} \psi _x +2\psi _{y,x} \psi _y +3\varphi _{x,x} \theta _x +3\varphi _{y,x} \theta _y } \right] ,\\&\left( {k_{yz}^7 } \right) =2\left[ {\varphi _x \theta _{x,y} +\varphi _x \theta _{y,y} +2\psi _x \psi _{x,y} +2\psi _y \psi _{y,y} +3\theta _x \varphi _{x,y} +3\theta _y \varphi _{y,y} } \right] , \\&\left( {k_x^8 } \right) =\left[ {\psi _{x,x}^2 +\psi _{y,x}^2 +2\varphi _{x,x} \theta _{x,x} +2\varphi _{y,x} \theta _{y,x} } \right] , \\&\left( {k_y^8 } \right) =\left[ {\psi _{x,y}^2 +\psi _{y,y}^2 +2\varphi _{x,y} \theta _{x,y} +2\varphi _{y,y} \theta _{y,y} } \right] , \\&\left( {k_{xy}^8 } \right) =\left[ \psi _{x,x} \psi _{x,y} +\psi _{y,x} \psi _{y,y} +2\theta _{x,x} \varphi _{x,y} \right. \\&\left. +2\theta _{y,x} \varphi _{y,y} +2\theta _{x,x} \varphi _{x,x} +2\theta _{y,x} \varphi _{y,x} \right] , \\&\left( {k_{zx}^8 } \right) =2\left[ {2\psi _x \theta _{x,x} +2\psi _y \theta _{y,x} +3\theta _x \psi _{x,x} +3\theta _y \psi _{y,x} } \right] , \\&\left( {k_{yz}^8 } \right) =2\left[ {2\psi _x \theta _{x,y} +2\psi _y \theta _{y,y} +3\theta _x \psi _{x,y} +3\theta _x \psi _{x,y} } \right] , \\&\left( {k_x^9 } \right) =2\left[ {\psi _{x,x} \theta _{x,x} +\psi _{y,x} \theta _{y,x} } \right] , \\&\left( {k_y^9 } \right) =2\left[ {\psi _{x,y} \theta _{x,y} +\psi _{y,y} \theta _{y,y} } \right] , \\&\left( {k_{xy}^9 } \right) =2\left[ {\psi _{x,x} \theta _{x,y} +\psi _{y,x} \theta _{y,y} +\theta _{x,x} \psi _{x,y} +\theta _{y,x} \psi _{y,y} } \right] , \\&\left( {k_{zx}^9 } \right) =2\left[ {3\theta _x \theta _{x,x} +3\theta _y \theta _{y,x} } \right] , \\&\left( {k_{yz}^9 } \right) =\left[ {6\left( {\theta _x \theta _{x,y} +\theta _y \theta _{y,y} } \right) } \right] , \\&\left( {k_x^{10} } \right) =\left[ {\theta _{x,x}^2 +\theta _{y,x}^2 } \right] , \\&\left( {k_y^{10} } \right) =\left[ {\theta _{x,y}^2 +\theta _{y,y}^2 } \right] , \\&\left( {k_y^{10} } \right) =\left[ {\theta _{x,y}^2 +\theta _{y,y}^2 } \right] , \left( {k_{xy}^{10} } \right) =2\left[ {\theta _{x,x} \theta _{x,y} +\theta _{y,x} \theta _{y,y} } \right] , \\&k_{zx}^{10} =0, k_{yz}^{10} =0. \end{aligned}$$

Appendix B

Some coupled terms in the above equations are:

$$\begin{aligned}&\displaystyle u_{,x} =\frac{\partial u_0 }{\partial x}, \quad v_{,y} =\frac{\partial v_0 }{\partial y} v_{,y} =\frac{\partial v_0 }{\partial y}, \quad v_{,y} =\frac{\partial v_0 }{\partial y}, \nonumber \\&\displaystyle u_{,y} =\frac{\partial u_0 }{\partial y}, \quad v_{,x} =\frac{\partial v_0 }{\partial x}, \quad w_{,x} =\frac{\partial w_0 }{\partial x}, \quad w_{,y} =\frac{\partial w_0 }{\partial y}, \quad \varphi _{y,y} =\frac{\partial \varphi _y }{\partial y}, \nonumber \\&\displaystyle \varphi _{x,y} =\frac{\partial \varphi _x }{\partial y}, \quad \varphi _{y,x} =\frac{\partial \varphi _y }{\partial x}, \quad \psi _{x,x} =\frac{\partial \psi _x }{\partial x}, \nonumber \\&\displaystyle \psi _{y,y} =\frac{\partial \psi _y }{\partial y}, \quad \psi _{x,y} =\frac{\partial \psi _x }{\partial y}, \nonumber \\&\displaystyle \psi _{y,x} =\frac{\partial \psi _y }{\partial x}, \quad \theta _{x,x} =\frac{\partial \theta _x }{\partial x}, \quad \theta _{y,y} =\frac{\partial \theta _y }{\partial y}, \nonumber \\&\displaystyle \theta _{x,y} =\frac{\partial \theta _x }{\partial y}, \quad \theta _{y,x} =\frac{\partial \theta _y }{\partial x}. \end{aligned}$$

Appendix C

Linear and nonlinear thickness coordinate matrix

$$\begin{aligned} \left[ {H_L } \right] =\left[ {{\begin{array}{llllllllllllllllllll} 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}} \\ \end{array} }} \right] , \nonumber \\ \begin{array}{l} [H_{NL} ]=\left[ {{\begin{array}{llllllllllllllllllll} 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}}&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad z&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{2}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{3}} \\ \end{array} }} \right. \\ \qquad \qquad \qquad \left. {{\begin{array}{lllllllllllllll} {z^{4}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{5}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{6}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad {z^{4}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{} \quad {z^{5}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{6}}&{}\quad 0&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad {z^{4}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{5}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{6}}&{}\quad 0&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad {z^{4}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{5}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{6}}&{}\quad 0 \\ 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{4}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{5}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {z^{6}} \\ \end{array} }} \right] , \\ \end{array} \end{aligned}$$

Appendix D

$$\begin{aligned} \left[ {D_1 } \right]&=\sum _{k=1}^3 {\mathop {\int }\limits _{Z_{k-1} }^{Z_k } {\left[ {T_L } \right] ^{T}} \left[ {\bar{{Q}}} \right] \left[ {T_L } \right] \text {d}z} ,\quad \left[ {D_2 } \right] =\sum _{k=1}^3 {\mathop {\int }\limits _{Z_{k-1} }^{Z_k } {\left[ {T_L } \right] ^{T}} \left[ {\bar{{Q}}} \right] \left[ {T_{NL} } \right] \text {d}z}, \nonumber \\ \left[ {D_3 }\right]&=\sum _{k=1}^3 {\mathop {\int }\limits _{Z_{k-1} }^{Z_k } {\left[ {T_{NL} } \right] ^{T}} \left[ {\bar{{Q}}} \right] \left[ {T_L } \right] \text {d}z}\quad \hbox {and}\quad \left[ {D_4 } \right] =\sum _{k=1}^3 {\mathop {\int }\limits _{Z_{k-1} }^{Z_k } {\left[ {T_{NL} } \right] ^{T}} \left[ {\bar{{Q}}} \right] \left[ {T_{NL} } \right] \text {d}z} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehar, K., Panda, S.K. Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading. Acta Mech 231, 1105–1123 (2020). https://doi.org/10.1007/s00707-019-02579-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02579-5

Navigation