Log in

Mindlin theory for the bending of porous plates

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Biot’s poroelastic theory has been applied for Mindlin plates to model moderately thick plates. If Mindlin’s kinematical assumptions and a power series expansion for the pore pressure in the thickness direction are considered, the original 3D problem is reduced to 2D. A truncated power series expansion with quadratic terms is considered for the pore pressure. Two functional relationships based on the given boundary conditions and one PDE are derived for the expansion coefficients. A meshless method based on the local Petrov–Galerkin approach is proposed to solve the set of governing PDE in the neutral plane of the poroelastic plate. All in-plane quantities are approximated by the moving least-squares scheme. After performing the spatial integrations, one obtains a system of ordinary differential equations for certain nodal unknowns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am 28, 168–178 (1956)

    Article  MathSciNet  Google Scholar 

  2. Selvadurai A.P.S.: Mechanics of Poroelastic Media. Kluwer Academic, Dordrecht (1996)

    Book  MATH  Google Scholar 

  3. Schanz M.: Poroelastodynamics: linear models, analytical solutions, and numerical methods. Appl. Mech. Rev. 62, 030803-15 (2009)

    Article  Google Scholar 

  4. Biot M.A.: Theory of buckling of a porous slab and its thermoelastic analogy. J. Appl. Mech. ASME 31, 194–198 (1964)

    Article  MathSciNet  Google Scholar 

  5. Nowinski J.L., Davis C.F.: The flexure and torsion of bones viewed as anisotropic poroelastic bodies. Int. J. Eng. Sci. 10, 1063–1079 (1972)

    Article  MATH  Google Scholar 

  6. Taber L.A.: A theory for transverse deflection of poroelastic plates. J. Appl. Mech. ASME 59, 628–634 (1992)

    Article  MATH  Google Scholar 

  7. Theodorakopoulos D.D., Beskos D.E.: Flexural vibrations of poroelastic plates. Acta Mech. 103, 191–203 (1994)

    Article  MATH  Google Scholar 

  8. Theodorakopoulos D.D., Beskos D.E.: Flexural vibrations of fissured poroelastic plates. Arch. Appl. Mech. 63, 413–423 (1993)

    Article  MATH  Google Scholar 

  9. Busse A., Schanz M., Antes H.: A poroelastic Mindlin plates. PAMM: Proc. Appl. Math. Mech. 3, 260–261 (2003)

    Article  Google Scholar 

  10. Nagler L., Schanz M.: An extendable poroelastic plate formulation in dynamics. Arch. Appl. Mech. 80, 1177–1195 (2010)

    Article  MATH  Google Scholar 

  11. Zhu T., Zhang J.D., Atluri S.N.: A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Comput. Mech. 21, 223–235 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Atluri S.N., Sladek J., Sladek V., Zhu T.: The local boundary integral equation (LBIE) and its meshless implementation for linear elasticity. Comput. Mech. 25, 180–198 (2000)

    Article  MATH  Google Scholar 

  13. Sladek J., Sladek V., Atluri S.N.: Meshless local Petrov–Galerkin method in anisotropic elasticity. CMES: Comput. Model. Eng. Sci. 6, 477–489 (2004)

    MATH  MathSciNet  Google Scholar 

  14. Sladek J., Stanak P., Han Z.D., Sladek V., Atluri S.N.: Applications of the MLPG method in engineering and sciences: a review. CMES: Comput. Model. Eng. Sci. 92, 423–475 (2013)

    Google Scholar 

  15. Bergamaschi L.: An efficient parallel MLPG method for poroelastic models. CMES: Comput. Model. Eng. Sci. 29, 191–215 (2009)

    MathSciNet  Google Scholar 

  16. Soares D. Jr: Dynamic analysis of porous media considering unequal phase discretization by meshless local Petrov–Galerkin formulations. CMES: Comput. Model. Eng. Sci. 61, 177–200 (2010)

    MATH  MathSciNet  Google Scholar 

  17. Soares D. Jr, Sladek V., Sladek J., Zmindak M., Medvecky S.: Porous media analysis by modified MLPG formulations. CMC: Comput. Mater. Contin. 27, 101–126 (2012)

    Google Scholar 

  18. Houbolt J.C.: A recurrence matrix solution for the dynamic response of elastic aircraft. J. Aeronaut. Sci. 17, 371–376 (1950)

    MathSciNet  Google Scholar 

  19. Khoshghalb A., Khalili N., Selvadurai A.P.S.: A three-point time discretization technique for parabolic differential equations. Int. J. Numer. Anal. Meth. Geomech. 35, 406–418 (2011)

    Article  MATH  Google Scholar 

  20. Zienkiewicz O.C., Chan A.H.C., Pastor M., Schrefler B.A., Shiomi T.: Computational Geomechanics with Special Reference to Earthquake Engineering. Wiley, Chichester (1999)

    MATH  Google Scholar 

  21. Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 55–164 (1941)

    Article  Google Scholar 

  22. Biot M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  23. Detournay, E., Cheng, A.H.D.: Fundamentals of Poroelasticity, volume II of Comprehensive Rock Engineering: Principles, Practice and Projects, chapter 5, pp. 113–171. Pergamon Press (1993)

  24. Reissner E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. ASME 12, A69–A77 (1945)

    MATH  MathSciNet  Google Scholar 

  25. Mindlin R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. ASME 18, 31–38 (1951)

    MATH  Google Scholar 

  26. Reddy J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  27. Sladek J., Sladek V., Zhang Ch.: Local integral equation method for viscoelastic Reissner–Mindlin plates. Comput. Mech. 41, 759–768 (2008)

    Article  MATH  Google Scholar 

  28. Lancaster P., Salkauskas K.: Surfaces generated by moving least square methods. Math. Comput. 37, 141–158 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nayroles B., Touzot G., Villon P.: Generalizing the finite element method. Comput. Mech. 10, 307–318 (1992)

    Article  MATH  Google Scholar 

  30. Atluri S.N.: The Meshless Method, (MLPG) for Domain and BIE Discretizations. Tech Science Press, Forsyth (2004)

    Google Scholar 

  31. Schanz, M., Busse, A.: Accoustic behavior of a poroelastic Mindlin plate. In: 17th ASCE Engineering Mechanics Conference EMI (2004)

  32. Papargyri-Beskou S., Tsinopoulos S.V., Beskos D.E.: Transient dynamic analysis of a fluid-saturated porous gradient elastic column. Acta Mech. 222, 351–362 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sladek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sladek, J., Sladek, V., Gfrerer, M. et al. Mindlin theory for the bending of porous plates. Acta Mech 226, 1909–1928 (2015). https://doi.org/10.1007/s00707-014-1287-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1287-x

Keywords

Navigation