Log in

Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Owing to the increasing ratio of surface to bulk volume, surface effects emerge in the mechanical performance of devices and materials when the characteristic size reduces to nanoscale. In this paper, the dispersion relations and the band gap properties of 2D phononic crystals with periodically arranged nanoholes or nanofibers are studied. The scattering matrix of a single scatterer is first derived from a set of nontraditional boundary conditions based on the surface elasticity theory. Then, the addition theorem of cylindrical waves and Bloch’s theorem of periodical structure are used to obtain the dispersion relations of an elastic wave polarized in the plane perpendicular to the axis of the nanoholes or nanofibers. It is found that the surface effect has remarkable influences on the dispersion relations and the band gaps for the phononic crystal with nanoholes. For the 2D phononic crystal with periodical arranged nanofibers, the interface effect is more evident for the softer fibers than for the stiffer fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sigalas M.M., Economou E.N.: Elastic and acoustic wave band structure. J. Sound Vib. 158, 377–382 (1992)

    Article  Google Scholar 

  2. Kushwaha M.S., Halevi P., Dobrzynski L., Djafari-Rouhani B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  Google Scholar 

  3. Liu Z., Zhang X., Mao Y., Zhu Y.Y., Yang Z., Chan C.T. et al.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  4. Hou Z., Wu F., Liu Y.: Phononic crystals containing piezoelectric material. Solid State Commun. 130, 745–749 (2004)

    Article  Google Scholar 

  5. Lan M., Wei P.: Laminated piezoelectric phononic crystal with imperfect interfaces. J. Appl. Phys. 111, 013505 (2012)

    Article  Google Scholar 

  6. Zhang X., Liu Z.: Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85, 341 (2004)

    Article  Google Scholar 

  7. Torres M., Monterode Espinosa F.R.: Ultrasonic band gaps and negative refraction. Ultrasonics 42, 787–790 (2004)

    Article  Google Scholar 

  8. Yang, S., Page, J., Liu, Z., Cowan, M., Chan, C., Sheng, P.: Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004)

    Google Scholar 

  9. Håkansson, A., Sánchez-Dehesa, J., Sanchis, L.: Acoustic lens design by genetic algorithms. Phys. Rev. B 70, 214302 (2004)

    Google Scholar 

  10. Qiu C., Liu Z., Shi J., Chan C.T.: Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals. Appl. Phys. Lett. 86, 224105 (2005)

    Article  Google Scholar 

  11. Khelif A., Choujaa A., Benchabane S., Djafari-Rouhani B., Laude V.: Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84, 4400 (2004)

    Article  Google Scholar 

  12. Chen G., Narayanaswamy A., Dames C.: Engineering nanoscale phonon and photon transport for direct energy conversion. Superlattices Microstruct. 35, 161–172 (2004)

    Article  Google Scholar 

  13. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  15. Gurtin, M.E., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Google Scholar 

  16. Gurtin M.E., Weissmüller J., Larché F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  17. Shenoy, V.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Google Scholar 

  18. Benveniste Y., Miloh T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33, 309–323 (2001)

    Article  Google Scholar 

  19. Zhou, L.G., Huang, H.: Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84, 1940 (2004)

    Google Scholar 

  20. Cammarata R.C., Sieradzki K., Spaepen F.: Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films. J. Appl. Phys. 87, 1227 (2000)

    Article  Google Scholar 

  21. Huang Z.P., Wang J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mechanica 182, 195–210 (2006)

    Article  MATH  Google Scholar 

  22. Duan H.L., Wang J., Karihaloo B.L., Huang Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Materialia 54, 2983–2990 (2006)

    Article  Google Scholar 

  23. Wang G.F., Wang T.J., Feng X.Q.: Surface effects on the diffraction of plane compressional waves by a nanosized circular hole. Appl. Phys. Lett. 89, 231923 (2006)

    Article  Google Scholar 

  24. Wang G.F., Feng X.Q., Yu S.W.: Interface effects on the diffraction of plane compressional waves by a nanosized spherical inclusion. J. Appl. Phys. 102, 043533 (2007)

    Article  Google Scholar 

  25. Hasheminejad S.M., Avazmohammadi R.: Size-dependent effective dynamic properties of unidirectional nanocomposites with interface energy effects. Compos. Sci. Technol. 69, 2538–2546 (2009)

    Article  Google Scholar 

  26. Liu W., Chen J., Liu Y., Su X.: Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Phys. Lett. A 376, 605–609 (2012)

    Article  Google Scholar 

  27. Zhen N., Wang Y.-S., Zhang C.: Surface/interface effect on band structures of nanosized phononic crystals. Mech. Res. Commun. 46, 81–89 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, B., Wei, P. Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers. Acta Mech 224, 2749–2758 (2013). https://doi.org/10.1007/s00707-013-0886-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0886-2

Keywords

Navigation