Log in

Combined experimental and computational investigation of a Schiff base derived from N-(1-naphthyl)ethylenediamine for fluoride recognition

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The Bratton–Marshall reagent, a free base of N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA2+.2Cl), is used to analyse arylamine type of drugs and as a sensor of many ions/molecules. The Schiff bases of it have also been used as chemosensors for various ions. The Schiff base, N-[2-[3,4-dimethoxybenzylidene)amino]ethyl](1-naphthyl)amine (LH), the condensation product of N-(1-naphthyl)ethylenediamine dihydrochloride and veratraldehyde was thus synthesized and employed for fluoride ion recognition. The compound was characterized using single crystal X-ray diffraction study and spectroscopy methods including UV–Vis, IR, and NMR spectroscopy. The compound crystallizes in orthorhombic system space group P212121 and possesses syn-configuration about the azomethine (–CH=N–) bond. Both the IR (υstr, 1638 cm−1) and NMR (δCH, 8.26 ppm) data evidence that this functionality (–CH=N–) exists in LH. When excited at 370 nm, the compound LH exhibits a prime emission band at 442 nm. It has an –N–H group which can donate proton. It was thus effectively employed for recognizing fluoride ions in DMSO forming L–H…..F association complex. The value of the association constant (KA) is found to be 1.92 × 103 M−1. The detection and quantification limits of LH for fluoride ions are 9.4 μM and 31.2 μM, respectively. It is significantly lower than the WHO permissible limit, 78.94 μM. DFT and TD-DFT calculations provide a clear understanding of the experimental observations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sturgeon RJ, Schulman SG (1975) Anal Chim Acta 74:192

    Article  CAS  Google Scholar 

  2. Norwitz G, Keliher PN (1981) Anal Chem 53:56

    Article  CAS  Google Scholar 

  3. Norwitz G, Keliher PN (1981) Anal Chem 53:1238

    Article  CAS  Google Scholar 

  4. Norwitz G, Keliher PN (1982) Anal Chem 54:807

    Article  CAS  Google Scholar 

  5. Norwitr G, Kellher PN (1984) Talanta 31:295

    Article  Google Scholar 

  6. Shinn MB (1941) Ind Eng Chem Anal Ed 13:33

    Article  CAS  Google Scholar 

  7. Ramsing A, Růžička J, Hansen EH (1980) Anal Chim Acta 114:59

    Article  Google Scholar 

  8. Giné MF, Bergamin FH, Zagatto EAG, Reis BF (1980) Anal Chim Acta 114:191

    Article  Google Scholar 

  9. Van Staden JF (1982) Anal Chim Acta 138:403

    Article  Google Scholar 

  10. Norwitr G, Kellher PN (1984) Analyst 109:1281

    Article  Google Scholar 

  11. Bermudez B (1988) Talanta 35:810

    Article  CAS  PubMed  Google Scholar 

  12. Ruzicka J, Hansen EH (1988) Flow Injection Analysis, 2nd edn. Wiley-Interscience, New York, p 153

    Google Scholar 

  13. Maimó J, Cladera A, Mas F, Forteza R, Estela JM, Cerda V (1989) Int J Environ Anal Chem 35:161

    Article  Google Scholar 

  14. Cardoso TMG, Garcia PT, Coltro WKT (2015) Anal Methods 7:7311

    Article  CAS  Google Scholar 

  15. Mesquita RBR, Ferreira MTSOB, Segundo RLA, Teixeira FCP, Bordalo AA, Rangel AOSS (2009) Anal Methods 1:195

    Article  CAS  PubMed  Google Scholar 

  16. Khan SA, Choudhury R, Majumdar M, Misra TK (2020) Spectrochim Acta Part A 234:118240

    Article  CAS  Google Scholar 

  17. Choudhury R, Purkayastha A, Debnath D, Misra TK (2017) J Mol Liq 238:96

    Article  CAS  Google Scholar 

  18. Refat MS, Adam AMA, Sharshar T, Saad HA, Eldaroti HH (2014) Spectrochim Acta Part A 122:34

    Article  CAS  Google Scholar 

  19. Sahana A, Banerjee A, Guha S, Chattopadhyay A, Mukhopadhyay SK, Das D (2012) Analyst 137:1544

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh K, Rathi S (2014) RSC Adv 4:48516

    Article  CAS  Google Scholar 

  21. Robert-Peillard F, Palacio-Barco E, Dudal Y, Coulomb B, Boudenne JL (2009) Anal Chem 81:3063

    Article  CAS  PubMed  Google Scholar 

  22. Tucker SP (2008) J Environ Monit 10:1337

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Qiu S, Chen S, **ong C, Liu H, Wang J, Zhang N, Hou J, He Q, Nie Z (2015) Anal Chem 87:422

    Article  CAS  PubMed  Google Scholar 

  24. Ghaderpoori M, Paydar M, Zarei A, Najafpoor AA, Gohary AH, Shams M (2019) Hum Ecol Risk Assess: Int J 25:851

    Article  CAS  Google Scholar 

  25. World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  26. World Health Organization (1994) Fluorides and oral health. World Health Organization, Geneva

    Google Scholar 

  27. Amini M, Mueller K, Abbaspour KC, Rosenberg T, Afyuni M, Møller KN, Sarr M, Johnson CA (2008) Environ Sci Technol 42:3662

    Article  CAS  PubMed  Google Scholar 

  28. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C (2005) Bull World Health Organ 83:661

    PubMed  PubMed Central  Google Scholar 

  29. Selwitz RH, Ismail AI, Pitts NB (2007) Lancet 369:51

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh A, Mukherjee K, Ghosh SK, Saha B (2013) Res Chem Intermed 39:2881

    Article  CAS  Google Scholar 

  31. Den Besten P, Li W (2011) Monogr Oral Sci 22:81

    Article  Google Scholar 

  32. Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride drinking-water. World Health Organization, Geneva

    Google Scholar 

  33. Shili A, Ayadi A, Taboukhat S, Zouari N, Sahraoui B, El-Ghayoury A (2020) J Mol Struct 1222:128933

    Article  CAS  Google Scholar 

  34. Karthikeyan K, Rama I, Subashini A, Arunagiri C, Selvakumar S (2020) Chem Data Collect 25:100337

    Article  CAS  Google Scholar 

  35. Ogutu HFO, Saban W, Malgas-Enus R, Luckay RC (2020) J Mol Struct 1211:128106

    Article  CAS  Google Scholar 

  36. Arooj M, Zahra M, Islam M, Ahmed N, Waseem A, Shafiq Z (2021) Spectrochim Acta Part A 261:120011

    Article  CAS  Google Scholar 

  37. Nakwanich B, Koonwong A, Suramitr A, Prompinit P, Poo-arporn RP, Hannongbua S, Suramitr S (2021) J Mol Struct 1245:131132

    Article  CAS  Google Scholar 

  38. Borah N, De S, Gogoi A, Das G (2020) New J Chem 44:18703

    Article  CAS  Google Scholar 

  39. Li Z, Wang S, **ao L, Li X, Shao X, **g X, Peng X, Ren L (2018) Inorgan Chim Acta 476:7

    Article  CAS  Google Scholar 

  40. Parthiban C, Elango KP (2015) Sens Actuators B Chem 215:544

    Article  CAS  Google Scholar 

  41. Rahman Z, Mahato M, Tohora N, Sultana T, Ghanta S, Das SK (2023) J Fluoresc 33:1027

    Article  CAS  PubMed  Google Scholar 

  42. Ghanta S (2019) J Mol Struct 1191:32

    Article  CAS  Google Scholar 

  43. Rahman Z, Rajbanshi M, Mahato M, Ghanta S, Das SK (2022) J Mol Liq 359:119365

    Article  CAS  Google Scholar 

  44. Nandi NB, Ghanta S, Kłak J, Sieron L, Maniukiewicz W, Misra TK (2023) Polyhedron 230:116215

    Article  CAS  Google Scholar 

  45. Nandi NB, Purkayastha A, Kłak J, Ganguly R, Ghanta S, Misra TK (2022) J Mol Struct 1252:132164

    Article  CAS  Google Scholar 

  46. Sarma M, Chatterjee T, Ghanta S, Das SK (2012) J Org Chem 77:432

    Article  CAS  PubMed  Google Scholar 

  47. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339

    Article  CAS  Google Scholar 

  48. Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H (2015) Acta Crystallogr Sect A Found Adv 71:59

    Article  CAS  Google Scholar 

  49. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112

    Article  CAS  Google Scholar 

  50. Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440

    Article  CAS  PubMed  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian16, revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  52. Becke AD (1992) J Chem Phys 96:2155

    Article  CAS  Google Scholar 

  53. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  54. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  55. Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845

    Article  CAS  PubMed  Google Scholar 

  56. Laurent AD, Adamo C, Jacquemin D (2014) Phys Chem Chem Phys 16:14334

    Article  CAS  PubMed  Google Scholar 

  57. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  58. Chatterjee T, Sarma M, Ghanta S, Das SK (2011) Tetrahedron Lett 52:5460

    Article  CAS  Google Scholar 

  59. Ghanta S (2023) J Mol Model 29:18

    Article  CAS  Google Scholar 

  60. Manna MS, Das CK, Ghanta S (2021) Struct Chem 32:1095

    Article  CAS  Google Scholar 

  61. Ghanta S (2016) J Mol Struct 1118:28

    Article  CAS  Google Scholar 

  62. Roy TK, Ghanta S, Mondal T, Saritha B, Mahapatra S, Prasad MD (2007) J Mol Struct Theochem 822:145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Department of Chemistry, NIT Agartala, for experimental, theoretical and instrumental facilities. ND is thankful to NIT Agartala for receiving Institutional Fellowship for research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susanta Ghanta or Tarun Kumar Misra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

706_2023_3111_MOESM1_ESM.docx

Supplementary file1 The CCDC number 2244898 for LH has crystallographic supplementary data and can be obtained without paying any charge from http://www.ccdc.cam.ac.uk/conts/retrieving.html, or the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. The IR spectra of N-(1-naphthyl)ethylenediamine dihydrochloride and LH are shown in Fig. S1 and S2, respectively. The 13C NMR spectrum of LH is placed in Fig. S3. The optimized structure of LH is given in Fig. S4. The bond lengths and bond angles of LH are listed in Table S1 and S2. The complete theoretical NMR data are listed in Table S3. The Cartesian coordinates (in Angstroms) of the LH molecule and LH...X- (X= F, Cl, Br, I, NO3, OH, HSO4, and OAc) complexes are given in Table S4 – S12 (DOCX 597 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Debnath, P., Nandi, N.B. et al. Combined experimental and computational investigation of a Schiff base derived from N-(1-naphthyl)ethylenediamine for fluoride recognition. Monatsh Chem 154, 1101–1114 (2023). https://doi.org/10.1007/s00706-023-03111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03111-1

Keywords

Navigation