Log in

Spectroscopic studies on the drug–drug interaction: the influence of fluoroquinolones on the affinity of tigecycline to human serum albumin and identification of the binding site

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Concomitant use of two or more drugs in therapy is becoming a more frequent phenomenon and clinically relevant drug–drug interactions at the level of binding to human serum albumin (HSA) are more often. The influence of fluoroquinolones–sparfloxacin, levofloxacin, and ciprofloxacin, on the interaction between tigecycline and HSA, was investigated in vitro by means of fluorescence and absorption spectroscopy. The results of UV–Vis and fluorescence spectroscopy showed that the fluorescence quenching of HSA was a result of the formation of new complexes through a static quenching process. The binding constants (Ka) and the number of binding sites (n) of all systems were calculated. The presence of sparfloxacin and ciprofloxacin increases and that of levofloxacin slightly decreases the binding constant of the HSA–tigecycline system. Competitive binding studies in the presence of site-specific markers showed that tigecycline was not significantly displaced by ibuprofen, but warfarin showed a significant displacement of tigecycline. These results suggest that the competitive binding of tigecycline and warfarin to HSA exists. The results confirm that the binding site of tigecycline is mainly located in Sudlow’s site I (subdomain IIA) of HSA.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Wolf FA, Brett GM (2000) Pharmacol Rev 52:207

    PubMed  Google Scholar 

  2. Dockal M, Carter DC, Rüker F (2000) J Biol Chem 275:3042

    Article  CAS  PubMed  Google Scholar 

  3. Olson RE, Christ DD (1996) Ann Rep Med Chem 31:327

    CAS  Google Scholar 

  4. Flarakos J, Morand KL, Vouros P (2005) Anal Chem 77:1345

    Article  CAS  PubMed  Google Scholar 

  5. Sudlow G, Birkett DJ, Wade DN (1975) Mol Pharmacol 11:824

    CAS  PubMed  Google Scholar 

  6. Sudlow G, Birkett DJ, Wade DN (1976) Mol Pharmacol 12:1052

    CAS  PubMed  Google Scholar 

  7. Seedher N, Agarwal P (2013) Luminescence 28:562

    Article  CAS  PubMed  Google Scholar 

  8. Hooper DC, Wolfson JS (1993) Quinolone antimicrobial agents, 2nd edn. American Society for Microbiology, Washington

    Google Scholar 

  9. Lode H (1999) Drug Saf 21:123

    Article  CAS  PubMed  Google Scholar 

  10. Pankey GA (2005) J Antimicrob Chemother 56:470

    Article  CAS  PubMed  Google Scholar 

  11. Zhanel GG, Homenuik K, Nichol K, Noreddin A, Vercaigne L, Embil J, Gin A, Karlowsky JA, Hoban DJ (2004) Drugs 64:63

    Article  CAS  PubMed  Google Scholar 

  12. Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S (2005) Antimicrob Agents Chemother 49:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang J, Sun HH, Zhang YZ, Yang LY, Dai J, Liu Y (2012) J Solution Chem 41:422

    Article  CAS  Google Scholar 

  14. Li Y, He W, Liu J, Sheng F, Hu Z, Chen X (2005) Biochim Biophys Acta 1722:15

    Article  CAS  PubMed  Google Scholar 

  15. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Plenum Press, New York

    Book  Google Scholar 

  16. MacManus-Spencer LA, Tse ML, Hebert PC, Bischel HN, Luthy RG (2010) Anal Chem 82:974

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharyya M, Chaudhuri U, Poddar RK (1990) Biochem Biophys Res Commun 167:1146

    Article  CAS  PubMed  Google Scholar 

  18. Stojanović SD, Janković SM, Matović ZD, Jakovljević IŽ, Jelić RM (2015) Monatsh Chem 146:399

    Article  CAS  Google Scholar 

  19. Kragh-Hansen U, Chuang VT, Otagiri M (2002) Biol Pharm Bull 25:695

    Article  CAS  PubMed  Google Scholar 

  20. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Protein Engin 12:439

    Article  CAS  Google Scholar 

  21. Carter DC, Ho JX (1994) Adv Protein Chem 45:153

    Article  CAS  PubMed  Google Scholar 

  22. Sudhamalla B, Gokara M, Ahalawat N, Amooru DG, Subramanyam R (2010) J Phys Chem B 114:9054

    Article  CAS  PubMed  Google Scholar 

  23. Chen T, Cao H, Zhu S, Lu Y, Shang Y, Wang M, Tang Y, Zhu L (2011) Spectrochim Acta A Mol Biomol Spectrosc 81:645

    Article  CAS  PubMed  Google Scholar 

  24. Dong C, Ma S, Liu Y (2013) Spectrochim Acta A Mol Biomol Spectrosc 103:179

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Chen L, Zeng B, Kang Q, Dai L (2013) Spectrochim Acta A Mol Biomol Spectrosc 105:74

    Article  CAS  PubMed  Google Scholar 

  26. Lehrer SS (1971) Biochemistry 10:3254

    Article  CAS  PubMed  Google Scholar 

  27. Zhang HM, Fei ZH, Tang BP, Chen J, Tao WH, Wang YQ (2012) Mol Biol Rep 39:4937

    Article  CAS  PubMed  Google Scholar 

  28. Alam SM, Akter MJ, Reza MN, Israt F, Ahmed F, Shilpi JA (2004) Pak J Biol Sci 7:79

    Article  Google Scholar 

  29. Ranjan M, Diffley P, Stephen G, Price D, Walton TJ, Newton RP (2002) Life Sci 71:115

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Zhang Z, Zhang D, Lv J (2001) Talanta 53:835

    Article  CAS  PubMed  Google Scholar 

  31. Li D, Zhu M, Xu C, Ji B (2011) Eur J Med Chem 46:588

    Article  CAS  PubMed  Google Scholar 

  32. **ao J, Chen L, Yang F, Liu C, Bai Y (2010) J Hazard Mater 182:696

    Article  CAS  PubMed  Google Scholar 

  33. Brunton L, Lazo J, Parker K (2005) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York

    Google Scholar 

  34. Seedher N, Agarwal P (2010) J Lumin 130:1841

    Article  CAS  Google Scholar 

  35. Seedher N, Bhatia S (2009) Drug Metabol Drug Interact 24:37

    Article  CAS  PubMed  Google Scholar 

  36. Szkudlarek A, Pentak D, Ploch A, Pożycka J, Maciążek-Jurczyk M (2017) Molecules 22:2249

    Article  PubMed Central  CAS  Google Scholar 

  37. Tan H, Chen L, Ma L, Liu S, Zhou H, Zhang Y, Guo T, Liu W, Dai H, Yu Y (2019) Toxins (Basel) 11:214

    Article  CAS  Google Scholar 

  38. Jelić RM, Stojanović SD, Berić JD, Odović J (2018) Ser J Exp Clin Res 19:17

    Article  CAS  Google Scholar 

  39. Wani TA, Bakheit AH, Zargar S, Rizwana H, Al-Majed AA (2020) Spectrochim Acta A Mol Biomol Spectrosc 227:117691

    Article  CAS  PubMed  Google Scholar 

  40. Freire E (2004) Drug Discov Today Technol 1:295

    Article  CAS  PubMed  Google Scholar 

  41. Lexa KW, Dolghih E, Jacobson MP (2014) PLoS ONE 9:e93323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Vallianatou T, Lambrinidis G, Tsantili-Kakoulidou A (2013) Expert Opin Drug Discov 8:583

    Article  CAS  PubMed  Google Scholar 

  43. He W, Li Y, Xue C, Hu Z, Chen X, Sheng F (2005) Bioorg Med Chem 13:1837

    Article  CAS  PubMed  Google Scholar 

  44. He XM, Carter DC (1992) Nature 358:209

    Article  CAS  PubMed  Google Scholar 

  45. Sakai M, Hara A, Anjo S, Nakamura M (1999) J Pharm Biomed Anal 18:1057

    Article  CAS  PubMed  Google Scholar 

  46. Yamasaki K, Rahman MH, Tsutsumi Y, Maruyama T, Ahmed S, Kragh-Hansen U, Otagiri M (2000) AAPS PharmSciTech 1:E12

    CAS  PubMed  Google Scholar 

  47. Sen P, Fatima S, Ahmad B, Khan RH (2009) Spectrochim Acta A Mol Biomol Spectrosc 74:94

    Article  PubMed  CAS  Google Scholar 

  48. Han XL, Mei P, Liu Y, **ao Q, Jiang FL, Li R (2009) Spectrochim Acta A Mol Biomol Spectrosc 74:781

    Article  PubMed  CAS  Google Scholar 

  49. Peterson FC, Anderson PJ, Berliner LJ, Brooks CL (1999) Protein Expr Purif 15:16

    Article  CAS  PubMed  Google Scholar 

  50. Wen M, Zhang X, Tian J, Ni S, Bian H, Huang Y, Liang H (2009) J Solution Chem 38:391

    Article  CAS  Google Scholar 

  51. Sahoo BK, Ghosh KS, Dasgupta S (2009) Biopolymers 91:108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Science and Technological Development of the Republic of Serbia for financial support (Grant Nos 172016 and 175007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan D. Stojanović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 112371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, S.D., Nićiforović, J.M., Živanović, S.M. et al. Spectroscopic studies on the drug–drug interaction: the influence of fluoroquinolones on the affinity of tigecycline to human serum albumin and identification of the binding site. Monatsh Chem 151, 999–1007 (2020). https://doi.org/10.1007/s00706-020-02627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02627-0

Keywords

Navigation