Log in

Evolutionary characterization and pathogenicity of Getah virus from pigs in Guangdong Province of China

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Getah virus (GETV) is an emerging zoonotic virus that can infect humans and many mammals through mosquitoes. In this study, a novel pathogenic GETV strain, GDQY2022, was isolated from a pig farm in Guangdong Province, China. Sequence comparisons and phylogenetic analysis showed that GDQY2022 belongs to group III (GIII) and was most closely related to strain HeN202009-2, with 99.78% nucleotide sequence identity. Histopathological examination revealed significant pathological changes, such as widened alveolar septum in the lungs with mild congestion and hemorrhage. Differences in viral load between tissues were assessed by real-time RT-PCR, and significantly higher levels of GETV were found in abdominal lymph nodes and lungs of subclinically and clinically affected pigs (P < 0.01). This study provides valuable data for understanding the risk of GETV infection in the pig industry and a reliable basis for studying the pathogenic mechanisms and diagnostic surveillance of GETV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li XD, Qiu FX, Yang H, Rao YN, Calisher CH (1992) Isolation of Getah virus from mosquitos collected on Hainan Island, China, and results of a serosurvey. Southeast Asian J Trop Med Public Health 23:730–734

    CAS  PubMed  Google Scholar 

  2. Li Y, Fu S, Guo X, Li X, Li M, Wang L, Gao X, Lei W, Cao L, Lu Z et al (2019) Serological Survey of Getah Virus in Domestic Animals in Yunnan Province, China. Vector Borne Zoonotic Dis 19:59–61. https://doi.org/10.1089/vbz.2018.2273

    Article  PubMed  Google Scholar 

  3. Karabatsos N (1985) International catalogue of arthropod-borne viruses, vol 3. American Society for Tropical Medicine and Hygiene, San Antonio (TX)

    Google Scholar 

  4. King AM, Lefkowitz E, Adams MJ, Carstens EB (2011) Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier

  5. Morita K, Igarashi A (1984) Oligonucleotide Fingerprint Analysis of Strains of Getah Virus Isolated in Japan and Malaysia. J Gen Virol 65:1899–1908. https://doi.org/10.1099/0022-1317-65-11-1899

    Article  CAS  PubMed  Google Scholar 

  6. Khwankamon Rattanatumhi N, Prasertsincharoen N, Naimon R, Kuwata H, Shimoda K, Ishijima K, Yonemitsu et al (2022) Shohei Minami, Supriyono, Ngo Thuy Bao Tran, A serological survey and characterization of Getah virus in domestic pigs in Thailand, 2017–2018. Transbound Emerg Dis 69:913–918. https://doi.org/10.1111/tbed.14042

  7. Lu G, Ou J, Ji J, Ren Z, Hu X, Wang C, Li S (2019) Emergence of Getah Virus Infection in Horse With Fever in China, 2018. Frontiers in Microbiology 10: https://www.frontiersin.org/articles/10.3389/fmicb.2019.01416 [Accessed November 5, 2022]

  8. Li Y-Y, Liu H, Fu S-H, Li X-L, Guo X-F, Li M-H, Feng Y, Chen W-X, Wang L-H, Lei W-W et al (2017) From discovery to spread: The evolution and phylogeny of Getah virus. Infect Genet Evol 55:48–55. https://doi.org/10.1016/j.meegid.2017.08.016

    Article  PubMed  Google Scholar 

  9. Turell MJ, O’guinn ML, Wasieloski LP, Dohm DJ, Lee W, Cho H, Kim H, Burkett DA, Mores CN, Coleman RE et al (2003) Isolation of Japanese Encephalitis and Getah Viruses from Mosquitoes (Diptera: Culicidae) Collected near Camp Greaves, Gyonggi Province, Republic of Korea, 2000. J Med Entomol 40:580–584. https://doi.org/10.1603/0022-2585-40.4.580

    Article  PubMed  Google Scholar 

  10. Ksiazek TG, Trosper JH, Cross JH, Basaca-Sevilla V (1981) Isolation of Getah virus from Nueva Ecija Province, Republic of the Philippines. Trans R Soc Trop Med Hyg 75:312–313. https://doi.org/10.1016/0035-9203(81)90346-1

    Article  CAS  PubMed  Google Scholar 

  11. l’vov SD, Gromashevski’i VL, Aristova VA, Morozova TN, Skvortsova TM, Gushchina EA, Petrova ES (2000) L’vov DK. [Isolation of Getah virus (Togaviridae, Alfavirus) strains in North- Eastern Asia]. Vopr Virusol 45:14–18

    PubMed  Google Scholar 

  12. Bryant JE, Crabtree MB, Nam VS, Yen NT, Duc HM, Miller BR (2005) Isolation of arboviruses from mosquitoes collected in northern Vietnam. Am J Trop Med Hyg 73:470–473

    Article  PubMed  Google Scholar 

  13. Brown CM, Timoney PJ (1998) Getah virus infection of Indian horses. Trop Anim Health Prod 30:241–252. https://doi.org/10.1023/A:1005079229232

    Article  CAS  PubMed  Google Scholar 

  14. Nemoto M, Bannai H, Tsujimura K, Kobayashi M, Kikuchi T, Yamanaka T, Kondo T Getah Virus Infection among Racehorses, Japan, 2014 - Volume 21, Number 5—May 2015 - Emerging Infectious Diseases journal - CDC. https://doi.org/10.3201/eid2105.141975

  15. Fukunaga Y, Kumanomido T, Kamada M (2000) Getah Virus as an Equine Pathogen. Veterinary Clin North America: Equine Pract 16:605–617. https://doi.org/10.1016/S0749-0739(17)30099-8

    Article  CAS  Google Scholar 

  16. Kanamitsu M, Taniguchi K, Urasawa S, Ogata T, Wada Y, Wada Y, Saroso JS (1979) Geographic Distribution of Arbovirus Antibodies in Indigenous Human Populations in the Indo-Australian Archipelago. Am J Trop Med Hyg 28:351–363. https://doi.org/10.4269/ajtmh.1979.28.351

    Article  CAS  PubMed  Google Scholar 

  17. Li XD, Qiu FX, Yang H, Rao YN, Calisher CH (1992) Isolation of Getah virus from mosquitos collected on Hainan Island, China, and results of a serosurvey. Southeast Asian J Trop Med Public Health 23:730–734

    CAS  PubMed  Google Scholar 

  18. Nemoto M, Bannai H, Tsujimura K, Kobayashi M, Kikuchi T, Yamanaka T, Kondo T (2015) Getah Virus Infection among Racehorses, Japan, 2014. Emerg Infect Dis 21:883–885. https://doi.org/10.3201/eid2105.141975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bannai H, Ochi A, Nemoto M, Tsujimura K, Yamanaka T, Kondo T (2016) A 2015 outbreak of Getah virus infection occurring among Japanese racehorses sequentially to an outbreak in 2014 at the same site. BMC Vet Res 12:98. https://doi.org/10.1186/s12917-016-0741-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu G, Ou J, Ji J, Ren Z, Hu X, Wang C, Li S (2019) Emergence of Getah Virus Infection in Horse With Fever in China, 2018. Front Microbiol 10:1416. https://doi.org/10.3389/fmicb.2019.01416

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gang Lu J, Ou J, Ji Z, Ren X, Wang HC, Li S (2019) Emergence of Getah Virus Infection in Horse With Fever in China, 2018. Front Microbiol 10:1416. https://doi.org/10.3389/fmicb.2019.01416

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu H, Zhang X, Li L-X, Shi N, Sun X-T, Liu Q, ** N-Y, Si X-K (2019) First isolation and characterization of Getah virus from cattle in northeastern China. BMC Vet Res 15:320. https://doi.org/10.1186/s12917-019-2061-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. l’vov SD, Gromashevski’i VL, Aristova VA, Morozova TN, Skvortsova TM, Gushchina EA, Petrova ES (2000) L’vov DK. [Isolation of Getah virus (Togaviridae, Alfavirus) strains in North- Eastern Asia]. Vopr Virusol 45:14–18

    PubMed  Google Scholar 

  24. Shi N, Zhu X, Qiu X, Cao X, Jiang Z, Lu H, ** N (2022) Origin, genetic diversity, adaptive evolution and transmission dynamics of Getah virus. Transbound Emerg Dis 69:e1037–e1050. https://doi.org/10.1111/tbed.14395

    Article  PubMed  Google Scholar 

  25. Li B, Wang H, Liang G (2022) Getah Virus (Alphavirus): An Emerging, Spreading Zoonotic Virus. Pathogens 11:945. https://doi.org/10.3390/pathogens11080945

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuwata R, Shimoda H, Phichitraslip T, Prasertsincharoen N, Noguchi K, Yonemitsu K, Minami S, Supriyono, Tran NTB, Takano A et al (2018) Getah virus epizootic among wild boars in Japan around 2012. Arch Virol 163:2817–2821. https://doi.org/10.1007/s00705-018-3897-4

    Article  CAS  PubMed  Google Scholar 

  27. Rattanatumhi K, Prasertsincharoen N, Naimon N, Kuwata R, Shimoda H, Ishijima K, Yonemitsu K, Minami S, Supriyono, Tran NTB et al (2022) A serological survey and characterization of Getah virus in domestic pigs in Thailand, 2017–2018. Transbounding Emerg Dis 69:913–918. https://doi.org/10.1111/tbed.14042

    Article  CAS  Google Scholar 

  28. Yang T, Li R, Hu Y, Yang L, Zhao D, Du L, Li J, Ge M (2018) Yu. An outbreak of Getah virus infection among pigs in China, 2017. Transbound Emerg Dis 65:632–637. https://doi.org/10.1111/tbed.12867

    Article  CAS  PubMed  Google Scholar 

  29. Yang T, Li R, Hu Y, Yang L, Zhao D, Du L, Li J, Ge M, Yu X (2018) An outbreak of Getah virus infection among pigs in China, 2017. Transbound Emerg Dis 65:632–637. https://doi.org/10.1111/tbed.12867

    Article  CAS  PubMed  Google Scholar 

  30. REED LJ, MUENCH H. A SIMPLE METHOD OF ESTIMATING FIFTY, PER CENT ENDPOINTS12 (1938) Am J Epidemiol 27:493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

    Article  Google Scholar 

  31. Thawng CN, Smith GB (2022) A transcriptome software comparison for the analyses of treatments expected to give subtle gene expression responses. BMC Genomics 23:452. https://doi.org/10.1186/s12864-022-08673-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Z-J, Qiu Y, Pu Y, Huang X, Ge X-Y, BioAider (2020) An efficient tool for viral genome analysis and its application in tracing SARS-CoV-2 transmission. Sustain Cities Soc 63:102466. https://doi.org/10.1016/j.scs.2020.102466

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  35. Eisenberg E, Levanon EY (2013) Human housekee** genes, revisited. Trends Genet 29:569–574. https://doi.org/10.1016/j.tig.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Li Y, Guan Z, Yang Y, Zhang J, Sun Q, Li B, Qiu Y, Liu K, Shao D et al (2022) Rapid Differential Detection of Japanese Encephalitis Virus and Getah Virus in Pigs or Mosquitos by a Duplex TaqMan Real-Time RT-PCR Assay. Front Vet Sci 9:839443. https://doi.org/10.3389/fvets.2022.839443

    Article  PubMed  PubMed Central  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 – ∆∆CT Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  38. Scherer WF, Funkenbusch M, Buescher EL, Izumit (1962) null. Sagiyama virus, a new group A arthropod-borne virus from Japan. I. Isolation, immunologic classification, and ecologic observations. Am J Trop Med Hyg 11:255–268. https://doi.org/10.4269/ajtmh.1962.11.255

  39. **ng C, Jiang J, Lu Z, Mi S, He B, Tu C, Liu X, Gong W (2020) Isolation and characterization of Getah virus from pigs in Guangdong province of China. Transbound Emerg Dis tbed13567. https://doi.org/10.1111/tbed.13567

  40. Ren T, Mo Q, Wang Y, Wang H, Nong Z, Wang J, Niu C, Liu C, Chen Y, Ouyang K et al (2020) Emergence and Phylogenetic Analysis of a Getah Virus Isolated in Southern China. Front Vet Sci 7:552517. https://doi.org/10.3389/fvets.2020.552517

    Article  PubMed  PubMed Central  Google Scholar 

  41. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJD, Chau TNB, Hoang DM, Chau NVV, Khanh TH, Dong VC et al (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12:1203–1207. https://doi.org/10.1038/nm1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Guangdong Provincial Natural Science Fund (2017A030310612).

Author information

Authors and Affiliations

Authors

Contributions

LZH designed and monitored the project. LZH, JHP, and HQZ wrote and revised the paper, performed all analyses, and interpreted the data. JHP, HQZ, GJY, SNC, XQC, MYZ, HH, YZG, JML, SCL, MJL, and MLM performed the experiments. LZH, JHP, and HQZ collected the samples. All authors revised and approved the paper for publication.

Corresponding author

Correspondence to Liangzong Huang.

Ethics declarations

Conflict of interest

GZY, SNC, MLM, and MJL were employed by Guangdong Findergene Biotechnology Co., Ltd., Foshan, Guangdong Province, China. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics statement

The archived porcine samples analyzed in this study were collected from clinically diseased pigs, and animal experiments were not conducted. Thus, no ethical approval was required.

Additional information

Communicated by Patricia Aguilar

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Zhang, H., Chen, X. et al. Evolutionary characterization and pathogenicity of Getah virus from pigs in Guangdong Province of China. Arch Virol 168, 258 (2023). https://doi.org/10.1007/s00705-023-05886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05886-4

Keywords

Navigation