Log in

Efficient application of a baculovirus-silkworm larvae expression system for obtaining porcine circovirus type 2 virus-like particles for a vaccine

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine circovirus type 2 (PCV2) is a major pathogen associated with swine diseases. It is the smallest single-stranded DNA virus, and its genome contains four major open reading frames (ORFs). ORF2 encodes the major structural protein Cap, which can self-assemble into virus-like particles (VLPs) in vitro and contains the primary antigenic determinants. In this study, we developed a high-efficiency method for obtaining VLPs and optimized the purification conditions. In this method, we expressed the protein Cap with a 6× His tag using baculovirus-infected silkworm larvae as well as the E. coli BL21(DE3) prokaryotic expression system. The PCV2 Cap proteins produced by the silkworm larvae and E. coli BL21(DE3) were purified. Cap proteins purified from silkworm larvae self-assembled into VLPs in vitro, while the Cap proteins purified from bacteria were unable to self-assemble. Transmission electron microscopy confirmed the self-assembly of VLPs. The immunogenicity of the VLPs produced using the baculovirus system was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Furthermore, the purification process was optimized. The results demonstrated that the expression system using baculovirus-infected silkworm larvae is a good choice for obtaining VLPs of PCV2 and has potential for the development of a low-cost and efficient vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allan G, Meehan B, Todd D, Kennedy S, McNeilly F, Ellis J, Clark EG, Harding J, Espuna E, Botner A, Charreyre C (1998) Novel porcine circoviruses from pigs with wasting disease syndromes. Vet Rec 142(17):467–468

    CAS  PubMed  Google Scholar 

  2. Allan GM, Ellis JA (2000) Porcine circoviruses: a review. J Vet Diagn Investig 12(1):3–14. https://doi.org/10.1177/104063870001200102

    Article  CAS  Google Scholar 

  3. Blanchard P, Mahé D, Cariolet R, Keranflec HA, Baudouard MA, Cordioli P, Albina E, Jestin A (2003) Protection of swine against post-weaning multisystemic wasting syndrome (PMWS) by porcine circovirus type 2 (PCV2) proteins. Vaccine 21(31):4565–4575. https://doi.org/10.1016/S0264-410X(03)00503-6

    Article  CAS  PubMed  Google Scholar 

  4. Bucarey SA, Noriega J, Reyes P, Tapia C, Sáenz L, Zuñiga A, Tobar JA (2009) The optimized capsid gene of porcine circovirus type 2 expressed in yeast forms virus-like particles and elicits antibody responses in mice fed with recombinant yeast extracts. Vaccine 27(42):5781–5790. https://doi.org/10.1016/j.vaccine.2009.07.061

    Article  CAS  PubMed  Google Scholar 

  5. Cao W, Li H, Zhang J, Li D, Acheampong DO, Chen Z, Wang M (2013) Periplasmic expression optimization of VEGFR2 D3 adopting response surface methodology: antiangiogenic activity study. Protein Expr Purif 90(2):55–66. https://doi.org/10.1016/j.pep.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  6. Chi J, Wu C, Chien M, Wu P, Wu C, Huang C (2014) The preparation of porcine circovirus type 2 (PCV2) virus-like particles using a recombinant pseudorabies virus and its application to vaccine development. J Biotechnol 181:12–19. https://doi.org/10.1016/j.jbiotec.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  7. Crowther RA, Berriman JA, Curran WL, Allan GM, Todd D (2003) Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus. J Virol 24(77):13036–13041. https://doi.org/10.1128/JVI.77.24.13036

    Article  Google Scholar 

  8. Fan H, Ju C, Tong T, Huang H, Lv J, Chen H (2007) Immunogenicity of empty capsids of porcine circovius type 2 produced in insect cells. Vet Res Commun 31(4):487–496. https://doi.org/10.1007/s11259-007-3469-7

    Article  CAS  PubMed  Google Scholar 

  9. Hamel AL, Lin LL, Gopi PSN (1998) Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol 72(6):5262–5267

    Article  CAS  Google Scholar 

  10. Kumar S, Jain KK, Singh A, Panda AK, Kuhad RC (2015) Characterization of recombinant pectate lyase refolded from inclusion bodies generated in E. coli BL21(DE3). Protein Expr Purif 110:43–51. https://doi.org/10.1016/j.pep.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  11. Li G, He W, Zhu H, Bi Y, Wang R, **ng G, Zhang C, Zhou J, Yuen K, Gao GF, Su S (2018) Origin, genetic diversity, and evolutionary dynamics of novel porcine circovirus 3. Adv Sci 5(9):1800275. https://doi.org/10.1002/advs.201800275

    Article  CAS  Google Scholar 

  12. López-Vidal J, Gómez-Sebastián S, Bárcena J, Nuñez MDC, Martínez-Alonso D, Dudognon B, Guijarro E, Escribano JM (2015) Improved production efficiency of virus-like particles by the baculovirus expression vector system. PLoS One 10(10):e140039. https://doi.org/10.1371/journal.pone.0140039

    Article  CAS  Google Scholar 

  13. Mankertz A, Mankertz J, Wolf K, Buhk HJ (1998) Identification of a protein essential for replication of porcine circovirus. J Gen Virol 79(Pt 2):381–384. https://doi.org/10.1099/0022-1317-79-2-381

    Article  CAS  PubMed  Google Scholar 

  14. Marcekova Z, Psikal I, Kosinova E, Benada O, Sebo P, Bumba L (2009) Heterologous expression of full-length capsid protein of porcine circovirus 2 in Escherichia coli and its potential use for detection of antibodies. J Virol Methods 162(1–2):133–141. https://doi.org/10.1016/j.jviromet.2009.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masuda A, Lee JM, Miyata T, Sato T, Hayashi S, Hino M, Morokuma D, Karasaki N, Mon H, Kusakabe T (2018) Purification and characterization of immunogenic recombinant virus-like particles of porcine circovirus type 2 expressed in silkworm pupae. J Gen Virol 99(7):917–926. https://doi.org/10.1099/jgv.0.001087

    Article  CAS  PubMed  Google Scholar 

  16. Menezes ACSC, Suzuki MF, Oliveira JE, Ribela MTCP, Furigo IC, Donato J, Bartolini P, Soares CRJ (2017) Expression, purification and characterization of the authentic form of human growth hormone receptor antagonist G120R-hGH obtained in Escherichia coli periplasmic space. Protein Expr Purif 131:91–100. https://doi.org/10.1016/j.pep.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  17. Morozov I, Sirinarumitr T, Sorden SD, Halbur PG, Morgan MK, Yoon KJ, Paul PS (1998) Detection of a novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol 36(9):2535–2541

    Article  CAS  Google Scholar 

  18. Nainys J, Lasickiene R, Petraityte-Burneikiene R, Dabrisius J, Lelesius R, Sereika V, Zvirbliene A, Sasnauskas K, Gedvilaite A (2014) Generation in yeast of recombinant virus-like particles of porcine circovirus type 2 capsid protein and their use for a serologic assay and development of monoclonal antibodies. BMC Biotechnol 14(1):100. https://doi.org/10.1186/s12896-014-0100-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nawagitgul P, Morozov I, Bolin SR, Harms PA, Sorden SD, Paul PS (2000) Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol 81(Pt 9):2281

    Article  CAS  Google Scholar 

  20. Qi Q, Yao L, Liang Z, Yan D, Li Z, Huang Y, Sun J (2016) Production of human type II collagen using an efficient baculovirus-silkworm multigene expression system. Mol Genet Genomics 291(6):2189–2198. https://doi.org/10.1007/s00438-016-1251-7

    Article  CAS  PubMed  Google Scholar 

  21. Segalés J (2012) Porcine circovirus type 2 (PCV2) infections: clinical signs. Pathol Lab Diagn Virus Res 164(1–2):10–19. https://doi.org/10.1016/j.virusres.2011.10.007

    Article  CAS  Google Scholar 

  22. Selas Castiñeiras T, Williams SG, Hitchcock A, Cole JA, Smith DC, Overton TW (2018) Development of a generic Β-lactamase screening system for improved signal peptides for periplasmic targeting of recombinant proteins in Escherichia coli. Sci Rep. https://doi.org/10.1038/s41598-018-25192-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sun J, Yao L, Yao N, Xu H, ** P, Kan Y (2010) Production of recombinant Bombyx mori nucleopolyhedrovirus in silkworm by intrahaemocoelic injection with invasive diaminopimelate auxotrophic Escherichia coli containing BmNPV-Bacmid. Biotechnol Appl Biochem 57(3):117–125. https://doi.org/10.1042/BA20100148

    Article  CAS  PubMed  Google Scholar 

  24. Sun JC, Zhang EH, Yao LG, Zhang HL, ** PF (2009) A high efficient method of constructing recombinant Bombyx mori (silkworm) multiple nucleopolyhedrovirus based on zero-background Tn7-mediated transposition in Escherichia coli. Biotechnol Prog 25(2):524–529. https://doi.org/10.1002/btpr.125

    Article  CAS  PubMed  Google Scholar 

  25. Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12(2):195–201. https://doi.org/10.1016/s0958-1669(00)00199-3

    Article  CAS  PubMed  Google Scholar 

  26. Tischer I, Bode L, Apodaca J, Timm H, Peters D, Rasch R, Pociuli S, Gerike E (1995) Presence of antibodies reacting with porcine circovirus in sera of humans, mice, and cattle. Arch Virol 140(8):1427–1439. https://doi.org/10.1007/BF01322669

    Article  CAS  PubMed  Google Scholar 

  27. Tischer I, Rasch R, Tochtermann G (1974) Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol Orig A 226:153–167

    CAS  PubMed  Google Scholar 

  28. Tong X, Oh EK, Lee B, Lee JK (2019) Production of long-chain free fatty acids from metabolically engineered Rhodobacter sphaeroides heterologously producing periplasmic phospholipase A2 in dodecane-overlaid two-phase culture. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1070-8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Trible BR, Kerrigan M, Crossland N, Potter M, Faaberg K, Hesse R, Rowland RRR (2011) Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease. Clin Vaccine Immunol 18(5):749–757. https://doi.org/10.1128/CVI.00418-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trundova M, Celer V (2007) Expression of porcine circovirus 2 ORF2 gene requires codon optimized E. coli cells. Virus Genes 34(2):199–204. https://doi.org/10.1007/s11262-006-0043-2

    Article  CAS  PubMed  Google Scholar 

  31. Truong C, Mahe D, Blanchard P, Le Dimna M, Madec F, Jestin A, Albina E (2001) Identification of an immunorelevant ORF2 epitope from porcine circovirus type 2 as a serological marker for experimental and natural infection. Arch Virol 146(6):1197–1211. https://doi.org/10.1007/s007050170115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei L, Kwang J, Wang J, Shi L, Yang B, Li Y, Liu J (2008) Porcine circovirus type 2 induces the activation of nuclear factor kappa B by IκBα degradation. Virology 378(1):177–184. https://doi.org/10.1016/j.virol.2008.05.013

    Article  CAS  PubMed  Google Scholar 

  33. Wu P, Chen T, Chi J, Chien M, Huang C (2016) Efficient expression and purification of porcine circovirus type 2 virus-like particles in Escherichia coli. J Biotechnol 220:78–85. https://doi.org/10.1016/j.jbiotec.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  34. Yao L, Wang S, Su S, Yao N, He J, Peng L, Sun J (2012) Construction of a baculovirus-silkworm multigene expression system and its application on producing virus-like particles. PLoS One 7(3):e32510. https://doi.org/10.1371/journal.pone.0032510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao LG, Sun JC, Xu H, Kan YC, Zhang XM, Yan HC (2010) A novel economic method for high throughput production of recombinant baculovirus by infecting insect cells with bacmid-containing diminopimelate-auxotrophic Escherichia coli. J Biotechnol 145(1):23–29. https://doi.org/10.1016/j.jbiotec.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  36. Yin S, Sun S, Yang S, Shang Y, Cai X, Liu X (2010) Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli. Virol J 7:166. https://doi.org/10.1186/1743-422X-7-166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhai S, Lu S, Wei W, Lv D, Wen X, Zhai Q, Chen Q, Sun Y, ** Y (2019) Reservoirs of porcine circoviruses: a mini review. Front Vet Sci 6:319. https://doi.org/10.3389/fvets.2019.00319

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Wang Z, Zhan Y, Gong Q, Yu W, Deng Z, Wang A, Yang Y, Wang N (2016) Generation of E. coli-derived virus-like particles of porcine circovirus type 2 and their use in an indirect IgG enzyme-linked immunosorbent assay. Arch Virol 161(6):1485–1491. https://doi.org/10.1007/s00705-016-2816-9

    Article  CAS  PubMed  Google Scholar 

  39. Zheng G, Lu Q, Wang F, ** Q, Teng M, Zhang N, Ren T, Ding P, Zhang G (2017) Selection of affinity peptides for the purification potential of porcine circovirus type 2 (PCV2) cap virus-like particles (VLPs). RSC Adv 7(62):38911–38914. https://doi.org/10.1039/C7RA05790C

    Article  CAS  Google Scholar 

  40. Zheng H, Ren F, Lu Q, Cao Z, Song J, Feng M, Liu J, Sun J (2019) An efficient method for multigene co-interference by recombinant Bombyx mori nucleopolyhedrovirus. Mol Genet Genomics 294(1):111–120. https://doi.org/10.1007/s00438-018-1491-9

    Article  CAS  PubMed  Google Scholar 

  41. Zheng H, Wang X, Ren F, Zou S, Feng M, Xu L, Yao L, Sun J (2018) Construction of a highly efficient display system for baculovirus and its application on multigene co-display. Mol Genet Genomics 293(5):1265–1277. https://doi.org/10.1007/s00438-018-1459-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Bo Ning in the maintenance and collection of field samples for this work. The assistance of Dr. Feifei Ren in experimental technology is also greatly appreciated.

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 31872426 and, 31372373), the Natural Science Foundation of Guangdong Province, China (grant number 2016A030311018).

Author information

Authors and Affiliations

Authors

Contributions

JS coordinated the project. QH and ZC performed the research. QH HZ and JS wrote the manuscript. QL and PW contributed to new methods. QH, ZC and JS performed data analysis. QH, ZC, and JS interpreted the context of results. All of the authors have read and approved the manuscript.

Corresponding authors

Correspondence to Hao Zheng or **gchen Sun.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Roman Pogranichniy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Cao, Z., Wang, P. et al. Efficient application of a baculovirus-silkworm larvae expression system for obtaining porcine circovirus type 2 virus-like particles for a vaccine. Arch Virol 165, 2301–2309 (2020). https://doi.org/10.1007/s00705-020-04754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04754-9

Navigation