Log in

A scaling analysis of soil moisture–precipitation interactions in a regional climate model

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The University of Oklahoma’s Advanced Regional Prediction System (ARPS) was used to examine the impacts of varying mean soil moisture and model resolution on the magnitude and frequency of precipitation events in the U.S. Central Plains and to determine whether modeled soil moisture and precipitation fields exhibit scale invariance using the statistical moments. It was found that high soil moisture resulted in greater precipitation amounts and a higher frequency of events, suggesting the occurrence of a positive soil moisture–precipitation feedback. The scaling analysis performed on cumulative precipitation determined that these fields did not exhibit signs of self-similarity and, therefore, statistical properties cannot be predicted at other resolutions. The scaling properties of soil moisture were highly variable in time which has important implications for the use of remotely sensed data, as scaling properties from 1 day cannot necessarily be applied to subsequent days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alonge CJ, Mohr KI, Tao W-K (2007) Numerical studies of wet versus dry soil regimes in the west African Sahel. J Hydrometeorol 8:102–116

    Article  Google Scholar 

  • Baldocchi DD, Krebs T, Leclerc MY (2005) “Wet/dry daisyworld”: a conceptual tool for quantifying the spatial scaling of heterogeneous landscapes and its impact on the subgrid variability of energy fluxes. Tellus 57B:175–188

    Google Scholar 

  • Bloschl G (1996) Scale and scaling in hydrology (habilitationsschrift), vol. wiener mitteliungen, wasser-abwasser-gerwasser, band 132. Institute fur Hydraulik, TU Wien

    Google Scholar 

  • Bloschl G (2001) Scaling in hydrology. Hydrol Process 15:709–711

    Article  Google Scholar 

  • Brubaker K, Entekhabi D (1996) Asymmetric recovery from wet versus dry soil moisture anomalies. J Hydrometeorol 35:94–109

    Google Scholar 

  • Brunsell NA (2006) Characterization of land-surface precipitation feedback regimes with remote sensing. Remote Sens Environ 100:200–211

    Article  Google Scholar 

  • Brunsell NA, Gillies RR (2003) Determination of scaling characteristics of avhrr data with wavelets: application to SGP97. Int J Remote Sens 24:2945–2957

    Article  Google Scholar 

  • Cook BI, Bonan GB, Levis S (2006) Soil moisture feedbacks to precipitation in southern Africa. J Climate 19:4198–4206

    Article  Google Scholar 

  • Davis FW, Schimen DS, Friedl MA, Michaelsen JC, Kittel TG, Dubayah R, Dozier J (1992) Covariance of biophysical data with digital topographic and land use maps over the fife site. J Geophys Res 97:19009–19021

    Google Scholar 

  • Deidda R, Benzi R, Siccardi F (1999) Multifractal modeling of anomalous scaling laws in rainfall. Water Resour Res 35:1853–1867

    Article  Google Scholar 

  • Dubayah R, Wood EF, Lavallee D (1997) Multiscaling analysis in distributed modeling and remote sensing: an application using soil moisture. In: Quatrochi DA, Goodchild MF (eds) Scale in remote sensing and GIS. Lewis, Boca Raton, pp 93–112

    Google Scholar 

  • Eltahir E (1998) A soil moisture-rainfall feedback mechanism. Part I: theory and observations.. Water Resour Res 34:765–776

    Article  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2000) Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems 3:308–319

    Article  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137:245–251

    Article  Google Scholar 

  • Findell KL, Eltahir EA (1997) An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour Res 33:725–735

    Article  Google Scholar 

  • Georgescu M, Weaver CP, Avissar R, Walko RL, Gonzalo M-M (2003) Sensitivity of model-simulated summertime precipitation over the Mississippi River Basin to the spatial distribution of initial soil moisture. J Geophys Res 108:GCP16.1–GCP16.24 doi:10.1029/2002JD003107

    Article  Google Scholar 

  • Gupta VK, Waymire E (1990) Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys Res 95:1990–2009

    Article  Google Scholar 

  • Halley JM, Hartley S, Kallimanis AS, Kunin WE, Lennon JJ, Sgardelis SP (2004) Uses and abuses of fractal methodology in ecology. Ecol Lett 7:254–271

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Kaste JM, Heimsath AM, Hohmann M (2006) Quantifying sediment transport across an undisturbed prairie landscape using cesium-137 and high resolution topography. Geomorphology 76:430–440

    Article  Google Scholar 

  • Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298(5601):2202–2205

    Article  Google Scholar 

  • Koster RD (2003) Observational evidence that soil moisture variations affect precipitation. Geophys Res Lett 30:45.1–45.4 doi:10.1029/2002GL016571

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1993) A multicomponent decomposition of spatial rainfall fields 1: segregation of large and small scale features using wavelet transforms. Water Resour Res 29:2515–2532

    Article  Google Scholar 

  • Manfreda S, McCabe MF, Florentino M, Rodriguez-Iturbe I, Wood EF (2007) Scaling Characteristics of spatial patterns of soil moisture from distributed modeling. Adv Water Resour 30:2145–2150

    Article  Google Scholar 

  • Menabde M, Harris D, Seed A, Austin G, Stow D (1997) Multiscaling properties of rainfall and bounded random cascades. Water Resour Res 33:2823–2830

    Article  Google Scholar 

  • Pal JS, Eltahir E (2001) Pathways relating soil moisture conditions to future summer rainfall within a model of the land-atmosphere system. J Climate 14:1227–1242

    Article  Google Scholar 

  • Peters-Lidard CD, Pan F, Wood EF (2001) A re-examination of modeled and measured soil moisture spatial variability and its implications for land surface modeling. Adv Water Resour 24:1069–1083

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Vogel GK, Rigon R, Entekhabi D, Castelli F, Rinaldo A (1995) On the spatial organization of soil moisture fields. Geophys Res Lett 22:2757–2760

    Article  Google Scholar 

  • Rodriguez-Iturbe I, D’Odorico P, Rinaldo A (1998) Possible self-organizing dynamics for land-atmosphere interaction. J Geophys Res 103:23071–23077

    Article  Google Scholar 

  • Seth A, Giorgi F (1998) The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Climate 11:2698–2712

    Article  Google Scholar 

  • Taylor CM, Ellis RJ (2006) Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys Res Lett 33:L03404 doi:10.1029/2005GL02525

    Article  Google Scholar 

  • Waymire E (1985) Scaling limits and self-similarity in precipitation fields. Water Resour Res 21(8):1271–1281

    Article  Google Scholar 

  • Western AW, Grayson RB, Bloschl G (2002) Scaling of soil moisture: a hydrological perspective. Annu Rev Earth Planet Sci 30:149–180

    Article  Google Scholar 

  • Xu J, Shuttleworth WJ, Gao X, Sorooshian S, Small EE (2004) Soil moisture-precipitation feedback on the north american monsoon system in the MM5-OSU model. Q J R Meteorol Soc 130:2873–2890

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V (2000) The advanced regional prediction system (arps)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification. Meteorol Atmos Phys 75:161–193

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V (2001) The advanced regional prediction system (arps)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part II: model physics and applications. Meteorol Atmos Phys 76:143–165

    Article  Google Scholar 

  • Xue M, Wang D, Gao J, Brewster K, Droegemeier KK (2003) The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteorol Atmos Phys 82:139–170

    Article  Google Scholar 

  • Yang F, Kumar A, Lao KM (2004) Potential predictability of U.S. summer climate with “perfect” soil moisture. J Hydrometeorol 5:883–895

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation EPSCOR grant (NSF EPS #0553722). We wish also would like to The Land Institute for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Brunsell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A.R., Brunsell, N.A. A scaling analysis of soil moisture–precipitation interactions in a regional climate model. Theor Appl Climatol 98, 221–235 (2009). https://doi.org/10.1007/s00704-009-0109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-009-0109-x

Keywords

Navigation