Log in

Novel paper-based potentiometric combined sensors using coumarin derivatives modified with vanadium pentoxide nanoparticles for the selective determination of trace levels of lead ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Novel miniaturized Pb(II) paper-based potentiometric sensors are described using coumarin derivatives I and II as electroactive ionophores and nano vanadium pentoxide as a solid contact material for the sensitive and selective monitoring of trace lead ions. Density functional theory (DFT) confirms optimum geometries, electronic properties, and charge transfer behaviors of 1:2 Pb(II): coumarin complexes. The sensors are prepared by using two strips of 20 × 5 mm filter paper with two circular orifices. One orifice is coated with vanadium pentoxide (V2O5) nanoparticles in colloidal conductive carbon as a solid-contact, covered by a PVC membrane containing coumarin ionophore to act as a sensing probe. The other orifice is treated with Ag/AgCl in a polyvinyl butyral (PVB) film, to act as a reference electrode. Sensors with ionophores (I) and (II) exhibit Nernstian slopes of 27.7 ± 0.2 and 30.2 ± 0.2 mV/decade over the linear concentration range 4.5 × 10−7 to 6.2 × 10−3 M and 8.5 × 10−8 to 6.2 × 10−3 M, with detection limits of 1.3 × 10−7 M (26.9 ppb) and 2.1 × 10−8 M (4.4 ppb), respectively. The sensors are satisfactorily used for accurate determination of lead ions in drinking water, lead-acid battery wastewater, and electronic waste leachates. The results compare favourably well with data obtained by flameless atomic absorption spectrometry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Data availability

Data will be made available on request.

References

  1. Wang L, Li B, Wang J, Qi J, Li J, Ma J, Chen L (2022) A rotary multi-positioned cloth/paper hybrid microfluidic device for simultaneous fluorescence sensing of mercury and lead ions by using ion imprinted technologies. J Hazard Mater 428:128165

    Article  CAS  PubMed  Google Scholar 

  2. Pathak P, Hwang J-H, Li RH, Rodriguez KL, Rex MM, Lee WH, Cho HJ (2021) Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water. Sens Actuators B 344:130263

    Article  CAS  Google Scholar 

  3. Abadin H, Ashizawa A, Llados F, Stevens YW (2007) Toxicological Profile for lead. Agency for Toxic Substances and Disease Registry (ATSDR)

    Google Scholar 

  4. Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans, poisoning in the Modern World-New tricks for an Old Dog. 10:70–90

  5. Javorac D, Dorđević AB, Anđelković M, Tatović S, Baralić K, Antonijević E, Kotur- Stevuljević J, Đukić-Ćosić D, Antonijević B, Bulat Z (2020) Redox and essential metal status in the brain of Wistar rats acutely exposed to a cadmium and lead mixture. Arh Hig Rada Toksikol 71:197–204

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bokara KK, Brown E, McCormick R, Yallapragada PR, Rajanna S, Bettaiya R (2008) Lead-induced increase in antioxidant enzymes and lipid peroxidation products in develo** rat brain. Biometals 21:9–16

    Article  CAS  PubMed  Google Scholar 

  7. Quintanilla-Vega B, Hoover DJ, Bal W, Silbergeld EK, Waalkes MP, Anderson LD (2000) Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem Res Toxicol 13:594–600

    Article  CAS  PubMed  Google Scholar 

  8. Reuben A, Caspi A, Belsky D, Broadbent J, Harrington H, Sugden K, Houts R, Ramrakha S, Poulton R, Moffitt T (2017) Association of childhood blood lead levels with cognitive function and socioeconomic mobility between childhood and adulthood. JAMA 317:1244–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Organization WH (2022) Lead in drinking-water: health risks, monitoring and corrective actions: technical brief. Geneva, Switzerland

    Google Scholar 

  10. Akkaya E, Erulas FA, Büyükpinar Ç, Bakirdere S (2019) Accurate and sensitive determination of lead in black tea samples using cobalt magnetic particles based dispersive solid-phase microextraction prior to slotted quartz tube-flame atomic absorption spectrometry. Food Chem 297:124947

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Chen H, Mao X, ** X (2000) Determination of trace copper, lead, cadmium, and iron in environmental and biological samples by flame atomic absorption spectrometry coupled to flow injection on-line coprecipitation preconcentration using DDTC-nickel as coprecipitate carrier. Int J Environ Anal Chem 76:267–282

    Article  CAS  Google Scholar 

  12. Uçak ŞŞ, Aydın A (2022) A novel thiourea derivative for preconcentration of copper (II), nickel (II), cadmium (II), lead (II) and iron (II) from seawater samples for Flame Atomic absorption spectrophotometry. Mar Pollut Bull 180:113787

    Article  Google Scholar 

  13. Kataba A, Nakayama SM, Nakata H, Toyomaki H, Yohannes YB, Yabe J, Muzandu K, Zyambo G, Kubota A, Matsukawa T (2021) An investigation of the wild rat crown incisor as an indicator of lead (pb) exposure using inductively couple plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS. Int J Environ Res Public Health 18:767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grotti M, Vecchio MA, Gobbato D, Mataloni M, Ardini F (2023) Precise determination of 204 Pb-based isotopic ratios in environmental samples by quadrupole inductively coupled plasma mass spectrometry. J Anal at Spectrom 38:1057–1064

    Article  CAS  Google Scholar 

  15. Yağmuroğlu O (2023) Determination of trace lead (II) in cleavers (Galium aparine) tea by Uv-vis spectrophotometry after preconcentration with deep eutectic solvent/DTZ probe-based liquid-liquid microextraction. J Food Compos Anal 118:105164

    Article  Google Scholar 

  16. Chen J, Zhang Y, Cheng M, Mergny J-L, Lin Q, Zhou J, Ju H (2019) Highly active G-quadruplex/hemin DNAzyme for sensitive colorimetric determination of lead (II). Microchim Acta 186:1–8

    Article  Google Scholar 

  17. Huang Z, Song H, Feng L, Qin J, Wang Q, Guo B, Wei L, Lu Y, Guo H, Zhu D (2023) A novel ultrasensitive electrochemical sensor based on a hybrid of rGO/MWCNT/AuNP for the determination of lead (II) in tea drinks. Microchem J 186:108346

    Article  CAS  Google Scholar 

  18. Hassan SSM, Ghalia AHA, Amr AF, Mohamed AHK (2003) Novel lead selective membrane potentiometric sensors based on chiral-2,6-bis-pyridinecarboxiimide derivatives. Talanta 60:81–91

    Article  CAS  PubMed  Google Scholar 

  19. Lisak G (2021) Reliable environmental trace heavy metal analysis with potentiometric ion sensors-reality or a distant dream. Environ Pollut 289:117882

    Article  CAS  PubMed  Google Scholar 

  20. Hassan SSM, Kamel AH, Fathy MA (2023) All-solid-state paper-based potentiometric combined sensor modified with reduced graphene oxide (rGO) and molecularly imprinted polymer for monitoring losartan drug in pharmaceuticals and biological samples. Talanta 253:123907

    Article  CAS  PubMed  Google Scholar 

  21. Lindner E, Gyurcsányi RE (2009) Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electrochem 13:51–68

    Article  CAS  Google Scholar 

  22. Cattrall R, Drew D, Hamilton I (1975) Some alkylphosphoric acid esters for use in coated- wire calcium-selective electrodes: part I. Response characteristics. Anal Chim Acta 76:269–277

    Article  CAS  Google Scholar 

  23. Hulanicki A, Trojanowicz M (1976) Calcium-selective electrodes with PVC membranes and solid internal contacts. Anal Chim Acta 87:411–417

    Article  CAS  Google Scholar 

  24. Hassan SSM, Kamel AH, Fathy MA (2022) A novel screen-printed potentiometric electrode with carbon nanotubes/polyaniline transducer and molecularly imprinted polymer for the determination of nalbuphine in pharmaceuticals and biological fluids. Anal Chim Acta 1227:340239

    Article  CAS  PubMed  Google Scholar 

  25. Hassan SSM, Kamel AH, Amr AE-GE, Abdelwahab Fathy M, Al-Omar MA (2020) Paper strip and ceramic potentiometric platforms modified with nano-sized polyaniline (PANi) for static and hydrodynamic monitoring of chromium in industrial samples. Molecules 25:629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu C, Jiang X, Zhao Y, Jiang W, Zhang Z, Yu L (2017) A solid-contact Pb2+-selective electrode based on electrospun polyaniline microfibers film as ion-to-electron transducer. Electrochim Acta 231:53–60

    Article  CAS  Google Scholar 

  27. Hassan SSM, Abdelbasir SM, Fathy MA, Amr AE-GE, Al-Omar MA, Kamel AH (2019) Gold plate electrodes functionalized by multiwall carbon nanotube film for potentiometric thallium (I) detection. Nanomaterials 9:1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Al Shagri LM, Kamel AH, Abd-Rabboh HS, Bajaber MA (2022) Molecularly imprinted polymer modified with an MWCNT nanocomposite for the fabrication of a Barbital Solid-Contact Ion-Selective Electrode. ACS Omega 7:32988–32995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Li J, Qin W (2023) Solid-contact polymeric membrane ion-selective electrodes based on electrodeposited NiCo2S4 nanosheet arrays. Talanta 251:123797

    Article  CAS  PubMed  Google Scholar 

  30. Hassan SSM, El-Shalakany HH, Fathy MA, Kamel AH (2024) A novel potentiometric screen-printed electrode based on crown ethers/nano manganese oxide/Nafion composite for trace level determination of copper ion in biological fluids. Microchim Acta 191:1–11

    Article  Google Scholar 

  31. Onor M, Gufoni S, Lomonaco T, Ghimenti S, Salvo P, Sorrentino F, Bramanti E (2017) Potentiometric sensor for non invasive lactate determination in human sweat. Anal Chim Acta 989:80–87

    Article  CAS  PubMed  Google Scholar 

  32. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee YK, Jang KI, Ma Y, Koh A, Chen H, Jung HN, Kim Y, Kwak JW, Wang L, Xue Y (2017) Chemical sensing systems that utilize soft electronics on thin elastomeric substrates with open cellular designs. Adv Funct Mater 27:1605476

    Article  Google Scholar 

  34. Parrilla M, Cánovas R, Jeerapan I, Andrade FJ, Wang J (2016) A textile-based stretchable multi‐ion potentiometric sensor. Adv Healthc Mater 5:996–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rahimi R, Ochoa M, Parupudi T, Zhao X, Yazdi IK, Dokmeci MR, Tamayol A, Khademhosseini A, Ziaie B (2016) A low-cost flexible pH sensor array for wound assessment. Sens Actuators B 229:609–617

    Article  CAS  Google Scholar 

  36. Fletcher S (2015) Screen-printed Carbon electrodes. Electrochem Carbon Electrodes, 425–444

  37. Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412

    Article  CAS  Google Scholar 

  38. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. TRAC Trends Anal Chem 28:925–942

    Article  CAS  Google Scholar 

  39. Cinti S, Mazzaracchio V, Cacciotti I, Moscone D, Arduini F (2017) Carbon black-modified electrodes screen-printed onto paper towel, waxed paper and parafilm M®. Sensors 17:2267

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gouda M, Salem M, Marzouk M, Mahmoud N, Ismail M (2023) Synthesis, antioxidant and antiproliferative evaluation, molecular docking and DFT studies of some novel coumarin and fused coumarin derivatives. Chem Biodivers 20(7):e202300706

  41. Govindarajan D, Uma Shankar V, Gopalakrishnan R (2019) Supercapacitor behavior and characterization of RGO anchored V2O5 nanorods. J Mater Sci: Mater Electron 30:16142–16155

    CAS  Google Scholar 

  42. Bakker E (1996) Determination of improved selectivity coefficients of polymer membrane ion- selective electrodes by conditioning with a discriminated ion. J Electrochem Soc 143:L83

    Article  CAS  Google Scholar 

  43. Bakker E, Willer M, Lerchi M, Seiler K, Pretsch E (1994) Determination of complex formation constants of neutral cation-selective ionophores in solvent polymeric membranes. Anal Chem 66:516–521

    Article  CAS  Google Scholar 

  44. Fathy MA, Abdelbasir SM, Hassan SSM, Kamel AH, Rayan D (2021) Mechanochemical activation for lead extraction from spent cathode ray tube. J Mater Cycles Waste Manage 23:1090–1101

    Article  CAS  Google Scholar 

  45. Lipps WC, Baxter TE, Braun-Howland EB (2023) Standard methods for the examination of water and wastewater, 24th edn. American Water Works Association, Water Environment Federation, American Public Health Association

    Google Scholar 

  46. Mansour FR, Danielson ND (2012) Ligand exchange spectrophotometric method for the determination of mole ratio in metal complexes. Microchem J 103:74–78

    Article  CAS  Google Scholar 

  47. ÇETİN Z, Bülent D (2023) A novel Schiff base ligand and its metal complexes: synthesis, characterization, theoretical calculations, catalase-like and catecholase-like enzymatic activities. J Mol Liq 380:121636

    Article  Google Scholar 

  48. Gupta V, Jain A, Kumar P (2006) PVC-based membranes of N, N′-dibenzyl-1, 4, 10, 13-tetraoxa-7, 16-diazacyclooctadecane as pb (II)-selective sensor. Sens Actuators B 120:259–265

    Article  CAS  Google Scholar 

  49. Kumar S, Mittal SK, Kaur N, Kaur R (2017) Improved performance of Schiff based ionophore modified with MWCNT for Fe (II) sensing by potentiometry and voltammetry supported with DFT studies. RSC Adv 7:16474–16483

    Article  CAS  Google Scholar 

  50. Zhou X, Wu G, Wu J, Yang H, Wang J, Gao G, Cai R, Yan Q (2013) Multiwalled carbon nanotubes–V₂O₅ integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries. J Mater Chem A 48:15459–15468

    Article  Google Scholar 

  51. Rasheed RT, Mansoor HS, Abdullah TA, Juzsakova T, Al-Jammal N, Salman AD, Al-Shaikhly RR, Le PC, Domokos E, Abdulla TA (2021) Synthesis, characterization of V 2 O 5 nanoparticles and determination of catalase mimetic activity by new colorimetric method. J Therm Anal Calorim 145:297–307

    Article  CAS  Google Scholar 

  52. Hassan SSM, Fathy MA, Moussa I, Obaida M, Kamel AH (2023) A novel miniaturized pH potentiometric electrode based on a nano bismuth oxide film deposited on a fluorine doped nano tin oxide glass substrate. Sens Actuators B 380:133397

    Article  CAS  Google Scholar 

  53. Bakker E (2019) Ion-selective electrodes | overview. In: Worsfold P, Poole C, Townshend A, Miró M (eds) Encyclopedia of Analytical Science, 3rd edn. Academic Press, Oxford, pp 231–251

    Google Scholar 

  54. Mir M, Lugo R, Tahirbegi IB, Samitier J (2014) Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications. Sensors 14:11844–11854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hassan SSM, Kamel AH, Amr AE-GE, Abd-Rabboh HS, Al-Omar MA, Elsayed EA (2020) A new validated potentiometric method for sulfite assay in beverages using cobalt (II) phthalocyanine as a sensory recognition element. Molecules 25:3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Powell KJ, Brown PL, Byrne RH, Gajda T, Hefter G, Leuz A-K, Sjöberg S, Wanner H (2009) Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2++ OH–, Cl–, CO32–, SO42–, and PO43–systems (IUPAC Technical Report). Pure Appl Chem 81:2425–2476

    Article  CAS  Google Scholar 

  57. Bobacka J (1999) Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal Chem 71:4932–4937

    Article  CAS  PubMed  Google Scholar 

  58. Temam AG, Alshoaibi A, Getaneh SA, Awada C, Nwanya AC, Ejikeme PM, a Ezema FI (2023) Recent progress on V2O5 based electroactive materials: Synthesis, properties, and supercapacitor application. Curr Opin Electrochem 38:101239

  59. Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80:1316–1322

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Zhao W, Tam B, Zhang H, Zhou Y, Yong L, Cheng W (2023) Pseudocapacitive porous amorphous vanadium pentoxide with enhanced multicolored electrochromism. Chem Eng J 452:139655

    Article  CAS  Google Scholar 

  61. Das S, Roy A, Barui AK, Alabbasi MA, Kuncha M, Sistla R, Sreedhar B, Patra CR (2020) Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study. Nanoscale 14. https://doi.org/10.1039/d0nr00631a

Download references

Author information

Authors and Affiliations

Authors

Contributions

Saad S.M. Hassan: supervision, conceptualization, validation, writing reviewing and editing. Mahmoud Abdelwahab Fathy: resources, methodology, investigation, formal analysis, data curation, visualization, validation, writing—original draft, writing—reviewing and editing.

Corresponding authors

Correspondence to Saad S. M. Hassan or Mahmoud Abdelwahab Fathy.

Ethics declarations

Ethical approval

All experiments adhered to the guidelines set forth in the Declaration of Helsinki (1964) and the Clinical Medical Research Regulation Act of 2020. Approval was granted by the Ethical Committee (EC) of the Faculty of Science, Ain Shams University, Cairo, Egypt.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S.S.M., Fathy, M.A. Novel paper-based potentiometric combined sensors using coumarin derivatives modified with vanadium pentoxide nanoparticles for the selective determination of trace levels of lead ions. Microchim Acta 191, 427 (2024). https://doi.org/10.1007/s00604-024-06494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06494-y

Keywords

Navigation