Log in

A novel dual-signal output strategy for POCT of CEA based on a smartphone electrochemical aptasensing platform

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A smartphone-based electrochemical aptasensing platform was developed for the point-of-care testing (POCT) of carcinoembryonic antigen (CEA) based on the ferrocene (Fc) and PdPt@PCN-224 dual-signal labeled strategy. The prepared PdPt@PCN-224 nanocomposite showed a strong catalytic property for the reduction of H2O2. Phosphate group-labeled aptamer could capture PdPt@PCN-224 by Zr–O–P bonds to form PdPt@PCN-224-P-Apt. Therefore, a dual signal labeled probe was formed by the hybridization between Fc-DNA and PdPt@PCN-224-P-Apt. The presence of CEA forced PdPt@PCN-224-P-Apt to leave the electrode surface due to the specific affinity, leading to the decrease of the reduction current of H2O2. At the same time, the Fc-DNA strand changed to hairpin structure, which made Fc closer to the electrode and resulted in the increase of the oxidation current of Fc. Thus, CEA can be accurately determined through both signals: the decrease of H2O2 reduction current and the increase of Fc oxidation current, which could avoid the false positive signal. Under the optimal conditions, the prepared aptasensor exhibited a wide linear range from 1 pg·mL−1 to 100 ng·mL−1 and low detection limits of 0.98 pg·mL−1 and 0.27 pg·mL−1 with Fc and PdPt@PCN-224 as signal labels, respectively. The aptasensor developed in this study has successfully demonstrated its capability to detect CEA in real human serum samples. These findings suggest that the proposed sensing platform will hold great potential for clinical tumor diagnosis and monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Shi SS, Li XJ, Ma RN, Shang L, Zhang W, Zhao HQ, Jia LP, Wang HS (2024) A smartphone-based electrochemical POCT for CEA based on signal amplification of Zr6MOFs. Lab Chip 24(2):367–374. https://doi.org/10.1039/d3lc00748k

    Article  CAS  PubMed  Google Scholar 

  2. **ang W, Lv Q, Shi H, **e B, Gao L (2020) Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 214:120716. https://doi.org/10.1016/j.talanta.2020.120716

    Article  CAS  PubMed  Google Scholar 

  3. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6(8):6546–6561. https://doi.org/10.1021/nn3023969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanash SM, Pitteri SJ, Faca VM (2008) Mining the plasma proteome for cancer biomarkers. Nature 452(7187):571–579. https://doi.org/10.1038/nature06916

    Article  CAS  PubMed  Google Scholar 

  5. Tobi M, O’Kieffe D, Trujillo N, Nochomovitz LE, Steinberg WM (1992) Detection of carcinoembryonic antigen in colonic effluent by specific anti-CEA monoclonal antibodies. Cancer Lett 67(1):47–54. https://doi.org/10.1016/0304-3835(92)90007-I

    Article  CAS  PubMed  Google Scholar 

  6. Lai G, Wu J, Leng C, Ju H, Yan F (2011) Disposable immunosensor array for ultrasensitive detection of tumor markers using glucose oxidase-functionalized silica nanosphere tags. Biosens Bioelectron 26(9):3782–3787. https://doi.org/10.1016/j.bios.2011.02.032

    Article  CAS  PubMed  Google Scholar 

  7. Wu W, Wu Q, Ren S-N, Liu Z, Chen F-F (2022) Ti3C2-MXene-assisted signal amplification for sensitive and selective surface plasmon resonance biosensing of biomarker. Chin J Anal Chem 50(2):13–18. https://doi.org/10.1016/j.cjac.2021.11.005

    Article  Google Scholar 

  8. Wu K, Chu C, Ma C, Yang H, Yan M, Ge S, Yu J, Song X (2015) Immunoassay for carcinoembryonic antigen based on the Zn2+-enhanced fluorescence of magnetic-fluorescent nanocomposites. Sens Actuators B: Chem 206:43–49. https://doi.org/10.1016/j.snb.2014.09.041

    Article  CAS  Google Scholar 

  9. Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Xu Y (2015) Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters’ fluorescence. Biosens Bioelectron 64:345–351. https://doi.org/10.1016/j.bios.2014.09.029

    Article  CAS  PubMed  Google Scholar 

  10. Lin X, Wang Y, Wang L, Lu Y, Li J, Lu D, Zhou T, Huang Z, Huang J, Huang H, Qiu S, Chen R, Lin D, Feng S (2019) Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood. Biosens Bioelectron 143:111599. https://doi.org/10.1016/j.bios.2019.111599

    Article  CAS  PubMed  Google Scholar 

  11. Shahbazi N, Hosseinkhani S, Ranjbar B (2017) A facile and rapid aptasensor based on split peroxidase DNAzyme for visual detection of carcinoembryonic antigen in saliva. Sens Actuators B: Chem 253:794–803. https://doi.org/10.1016/j.snb.2017.06.024

    Article  CAS  Google Scholar 

  12. Wang D, Li Y, Lin Z, Qiu B, Guo L (2015) Surface-enhanced electrochemiluminescence of Ru@SiO2 for ultrasensitive detection of carcinoembryonic antigen. Anal Chem 87(12):5966–5972. https://doi.org/10.1021/acs.analchem.5b01038

    Article  CAS  PubMed  Google Scholar 

  13. Tan Y-Y, Tan H-S, Liu M, Li S-S (2023) Electrochemical ratiometric dual-signal immunoassay for accurate detection of carcinoembryonic antigen in clinical serum based on rGO-Pd@Au-Thi and Chi-Fc-Au. Sens Actuators B: Chem 380:133340. https://doi.org/10.1016/j.snb.2023.133340

    Article  CAS  Google Scholar 

  14. Liu J, Shang Y, Zhu Q, Zhang X, Zheng J (2019) A voltammetric immunoassay for the carcinoembryonic antigen using silver(I)-terephthalate metal-organic frameworks containing gold nanoparticles as a signal probe. Microchim Acta 186:509. https://doi.org/10.1007/s00604-019-3638-8

    Article  CAS  Google Scholar 

  15. Gua X, She Z, Ma T, Tian S, Kraatz H-B (2018) Electrochemical detection of carcinoembryonic antigen. Biosens Bioelectron 102:610–616. https://doi.org/10.1016/j.bios.2017.12.014

    Article  CAS  Google Scholar 

  16. Feng Q, Wang M, Qin L, Wang P (2019) Dual-signal readout of DNA methylation status based on the assembly of a supersandwich electrochemical biosensor without enzymatic reaction. ACS Sensors 4(10):2615–2622. https://doi.org/10.1021/acssensors.9b00720

    Article  CAS  PubMed  Google Scholar 

  17. Han Y, Ding C, Zhou J, Tian Y (2015) Single probe for imaging and biosensing of pH, Cu2+ ions, and pH/Cu2+ in live cells with ratiometric fluorescence signals. Anal Chem 87(10):5333–5339. https://doi.org/10.1021/acs.analchem.5b00628

    Article  CAS  PubMed  Google Scholar 

  18. Shustova NB, Cozzolino AF, Reineke S, Baldo M, Dincă M (2013) Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal–organic frameworks with open metal sites. J Am Chem Soc 135(36):13326–13329. https://doi.org/10.1021/ja407778a

    Article  CAS  PubMed  Google Scholar 

  19. Daneshpour M, Karimi B, Omidfar K (2018) Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor. Biosens Bioelectron 109:197–205. https://doi.org/10.1016/j.bios.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  20. Lu H, Ding B, Tong L, Wu F, Yi X, Wang J (2020) Toehold-mediated strand displacement reaction for dual-signal electrochemical assay of apolipoprotein E genoty**. ACS Sensors 5(9):2959–2965. https://doi.org/10.1021/acssensors.0c01511

    Article  CAS  PubMed  Google Scholar 

  21. Zhang G, Liu Z, Fan L, Han Y, Guo Y (2021) A novel dual signal and label-free electrochemical aptasensor for mucin 1 based on hemin/graphene@PdPtNPs. Biosens Bioelectron 173:112785. https://doi.org/10.1016/j.bios.2020.112785

    Article  CAS  PubMed  Google Scholar 

  22. Ma R-N, Wang L-L, Zhang M, Jia L-P, Zhang W, Shang L, Jia W-L, Wang H-S (2018) A novel one-step triggered “signal-on/off” electrochemical sensing platform for lead based on the dual-signal ratiometric output and electrode-bound DNAzyme assembly. Sens Actuators B: Chem 257:678–684. https://doi.org/10.1016/j.snb.2017.10.158

    Article  CAS  Google Scholar 

  23. Li L, Yang L-W, Zhang S, Sun Y, Li F, Qin T-T, Liu X-Q, Zhou Y, Alwarappan S (2020) A NiCo2S4@N/S–CeO2 composite as anelectrocatalytic signal amplification labelfor aptasensing. J Mater Chem C 8(42):14723–14731. https://doi.org/10.1039/d0tc02738c

    Article  CAS  Google Scholar 

  24. Dan Z, Geng C, Liu X-Q, ** X, Zhao Z, Liu Y, Alwarappan S (2023) Photoelectrochemical detection of superoxide anions released from mitochondria in HepG2 cells based on the synergistic effect of MnO2@Co3O4 core-shell p-n heterojunction. Biosens Bioelectron 237:115368. https://doi.org/10.1016/j.bios.2023.115368

    Article  CAS  Google Scholar 

  25. Ning Y, Lu F, Liu Y, Yang S, Wang F, Ji X, He Z (2021) Glow-type chemiluminescent hydrogels for point-of-care testing (POCT) of cholesterol. Analyst 146(15):4775–4780. https://doi.org/10.1039/D1AN00676B

    Article  CAS  PubMed  Google Scholar 

  26. Yin B, Wan X, Sohan A, Lin X (2022) Microfluidics-Based POCT for SARS-CoV-2 Diagnostics. Micromachines 13:1238. https://doi.org/10.3390/mi13081238

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu T, He J, Lu Z, Sun M, Wu M, Wang X, Jiang Y, Zou P, Rao H, Wang Y (2022) A visual electrochemiluminescence molecularly imprinted sensor with Ag+@UiO-66-NH2 decorated CsPbBr3 perovskite based on smartphone for point-of-care detection of nitrofurazone. Chem Eng J 429:132462. https://doi.org/10.1016/j.cej.2021.132462

    Article  CAS  Google Scholar 

  28. Lu Z, Dai S, Liu T, Yang J, Sun M, Wu C, Su G, Wang X, Rao H, Yin H, Zhou X, Ye J, Wang Y (2023) Machine learning-assisted Te–CdS@Mn3O4 nano-enzyme induced self-enhanced molecularly imprinted ratiometric electrochemiluminescence sensor with smartphone for portable and visual monitoring of 2,4-D. Biosens Bioelectron 222:114996. https://doi.org/10.1016/j.bios.2022.114996

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Cui Y, Sun M, Wang T, Liu T, Dai X, Zou P, Zhao Y, Wang X, Wang Y, Zhou M, Su G, Wu C, Yin H, Rao H, Lu Z (2022) Deep learning-assisted smartphone-based molecularly imprinted electrochemiluminescence detection sensing platform: protable device and visual monitoring furosemide. Biosens Bioelectron 209:114262. https://doi.org/10.1016/j.bios.2022.114262

    Article  CAS  PubMed  Google Scholar 

  30. Li F, Guo L, Li Z, He J, Cui H (2020) Temporal-spatial-color multiresolved chemiluminescence imaging for multiplex immunoassays using a smartphone coupled with microfluidic chip. Anal Chem 92(10):6827–6831. https://doi.org/10.1021/acs.analchem.0c01405

    Article  CAS  PubMed  Google Scholar 

  31. Li C, Liu C, Liu R, Wang Y, Li A, Tian S, Cheng W, Ding S, Li W, Zhao M, **a Q (2023) A novel CRISPR/Cas14a-based electrochemical biosensor for ultrasensitive detection of Burkholderia pseudomallei with PtPd@PCN-224 nanoenzymes for signal amplification. Biosens Bioelectron 225:115098. https://doi.org/10.1016/j.bios.2023.115098

    Article  CAS  PubMed  Google Scholar 

  32. Park J, Jiang Q, Feng D, Mao L, Zhou H-C (2016) Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy. J Am Chem Soc 138(10):3518–3525. https://doi.org/10.1021/jacs.6b00007

    Article  CAS  PubMed  Google Scholar 

  33. Liu B, Liu J (2017) Freezing directed construction of bio/nano interfaces: reagentless conjugation, denser spherical nucleic acids, and better nanoflares. J Am Chem Soc 139(28):9471–9474. https://doi.org/10.1021/jacs.7b04885

    Article  CAS  PubMed  Google Scholar 

  34. Shang L, Shi B-J, Zhang W, Jia L-P, Ma R-N, Xue Q-W, Wang H-S (2022) Ratiometric electrochemiluminescence sensing of carcinoembryonic antigen based on luminol. Anal Chem 94(37):12845–12851. https://doi.org/10.1021/acs.analchem.2c02803

    Article  CAS  PubMed  Google Scholar 

  35. Yu K, Wei T, Li Z, Li J, Wang Z, Dai Z (2020) Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF–DNA interaction. J Am Chem Soc 142(51):21267–21271. https://doi.org/10.1021/jacs.0c10442

    Article  CAS  PubMed  Google Scholar 

  36. Wang B, Liu S, Liu L, Song W-W, Zhang Y, Wang S-M, Han Z-B (2021) MOF/PEDOT/HPMo-based polycomponent hierarchical hollow micro-vesicles for high performance flexible supercapacitors. J Mater Chem A 9(5):2948–2958. https://doi.org/10.1039/D0TA10603H

    Article  CAS  Google Scholar 

  37. Shi S-S, Jia L-P, Ma R-N, Jia W-L, Wang H-S (2015) A label-free electrochemical aptasensor for 8-hydroxy-2′-deoxyguanosine detection. J Electroanal Chem 759:107–112. https://doi.org/10.1016/j.jelechem.2015.10.040

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Shandong Province (ZR2020MB061) and the National Natural Science Foundation of China (No. 21427808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huai-Qing Zhao, Li-** Jia or Huai-Sheng Wang.

Ethics declarations

Ethics approval

This study was approved by the Biomedical Research Ethics Subcommittee of Liaocheng University (BRES). All the experiments were performed in compliance with the relevant laws and institutional guidelines of BRES.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1372 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, SS., Li, XJ., Ma, RN. et al. A novel dual-signal output strategy for POCT of CEA based on a smartphone electrochemical aptasensing platform. Microchim Acta 191, 407 (2024). https://doi.org/10.1007/s00604-024-06493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06493-z

Keywords

Navigation