Log in

Strand displacement–triggered FRET nanoprobe tracking TK1 mRNA in living cells for ratiometric fluorimetry of nucleic acid biomarker

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A precisely designed dual-color biosensor has realized a visual assessment of thymidine kinase 1 (TK1) mRNA in both living cells and cell lysates. The oligonucleotide probe is constructed by hybridizing the antisense strand of the target and two recognition sequences, in which FAM serves as the donor and TAMRA as the acceptor. Once interacting with the target, two recognition strands are replaced, and then the antisense complementary sequence forms a more stable double-stranded structure. Due to the increasing spatial distance between two dyes, the FRET is attenuated, leading to a rapid recovery of FAM fluorescence and a reduction of TAMRA fluorescence. A discernible color response from orange to green could be observed by the naked eye, with a limit of detection (LOD) of 0.38 nM and 5.22 nM for spectrometer- and smartphone-based assays, respectively. The proposed ratiometric method transcends previous reports in its capacities in visualizing TK1 expression toward reliable nucleic acid biomarker analysis, which might establish a general strategy for ratiometric biosensing via strand displacement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Aufderklamm S, Todenhöfer T, Gakis G et al (2012) Thymidine kinase and cancer monitoring. Cancer Lett 316(1):6–10. https://doi.org/10.1016/j.canlet.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  2. Sawyers CL (2008) The cancer biomarker problem. Nature 452:548–552. https://doi.org/10.1038/nature06913

    Article  CAS  PubMed  Google Scholar 

  3. Nikanjam M, Kato S, Kurzrock R (2022) Liquid biopsy: current technology and clinical applications. J Hematol Oncol 15:131. https://doi.org/10.1186/s13045-022-01351-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCartney A, Malorni L (2020) Thymidine kinase-1 as a biomarker in breast cancer: estimating prognosis and early recognition of treatment resistance. Biomark Med 14:495–498. https://doi.org/10.2217/bmm-2020-0072

    Article  CAS  PubMed  Google Scholar 

  5. Jagarlamudi KK, Shaw M (2018) Thymidine kinase 1 as a tumor biomarker: technical advances offer new potential to an old biomarker. Biomark Med 12:1035–1048. https://doi.org/10.2217/bmm-2018-0157

    Article  CAS  PubMed  Google Scholar 

  6. Bitter EE, Townsend MH, Erickson R et al (2020) Thymidine kinase 1 through the ages: a comprehensive review. Cell Biosci 10:138. https://doi.org/10.1186/s13578-020-00493-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516. https://doi.org/10.1038/nmeth.1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Larkey NE, Zhang LL, Lansing SS et al (2016) Forster resonance energy transfer to impart signal-on and -off capabilities in a single microRNA biosensor. Analyst 141:6239–6250. https://doi.org/10.1039/D0AY01961E

    Article  CAS  PubMed  Google Scholar 

  9. Yang YJ, Huang J, Yang XH et al (2015) FRET nanoflares for intracellular mRNA detection: avoiding false positive signals and minimizing effects of System fluctuations. J Am Chem Soc 137:8340–8343. https://doi.org/10.1021/jacs.5b04007

    Article  CAS  PubMed  Google Scholar 

  10. Tsourkas A, Behlke MA, Xu Y, Bao G (2003) Spectroscopic features of dual fluorescence/luminescence resonance energy-transfer molecular beacons. Anal Chem 75:3697–3703. https://doi.org/10.1021/ac034295l

    Article  CAS  PubMed  Google Scholar 

  11. Karbownik M, Brzezianska E, Lewinski A (2005) Increased expression of mRNA specific for thymidine kinase, deoxycytidine kinase or thymidine phosphorylase in human papillary thyroid carcinoma. Cancer Lett 225:267–273. https://doi.org/10.1016/j.canlet.2004.10.044

    Article  CAS  PubMed  Google Scholar 

  12. Koczor CA, Torres RA, Fields EJ et al (2013) Thymidine kinase and mtDNA depletion in human cardiomyopathy: epigenetic and translational evidence for energy starvation. Physiol Genomics 45:590–596. https://doi.org/10.1152/physiolgenomics.00014.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeong MH, ** YH, Kang EY et al (2004) The modulation of radiation-induced cell death by genistein in K562 cells: activation of thymidine kinase 1. Cell Res 14:295–302. https://doi.org/10.1038/sj.cr.7290230

    Article  CAS  PubMed  Google Scholar 

  14. Sun Z, Tong Y, Zhou X et al (2021) Ratiometric fluorescent biosensor based on Forster resonance energy transfer between carbon dots and acridine Orange for miRNA analysis. ACS Omega 6:34150–34159. https://doi.org/10.1021/acsomega.1c05901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fu Y, Chen T, Wang G et al (2017) Production of a fluorescence resonance energy transfer (FRET) biosensor membrane for microRNA detection. J Mater Chem B 5:7133–7139. https://doi.org/10.1039/C7TB01399J

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Zhang Y, Chen D et al (2021) Toehold-mediated ligation-free rolling circle amplification enables sensitive and rapid imaging of messenger RNAs in situ in cells. Anal Chim Acta 1160:338463. https://doi.org/10.1016/j.aca.2021.338463

    Article  CAS  PubMed  Google Scholar 

  17. Li T, Sun M, **a S et al (2024) A binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. Talanta 269:125465. https://doi.org/10.1016/j.talanta.2023.125465

    Article  CAS  PubMed  Google Scholar 

  18. Huang J, Wang H, Yang X et al (2016) Fluorescence resonance energy transfer-based hybridization chain reaction for in situ visualization of tumor-related mRNA. Chem Sci 7:3829–3835. https://doi.org/10.1039/C6SC00377J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mo L, Liang D, He W et al (2021) Ratiometric and amplified fluorescence nanosensor based on a DNA tetrahedron for miRNA imaging in living cells. J Mater Chem B 9:8341–8347. https://doi.org/10.1039/D1TB01537K

    Article  CAS  PubMed  Google Scholar 

  20. Zhao T, Yan W, Dong F et al (2022) A smartphone-based platform for ratiometric visualization of SARS-CoV-2 via an oligonucleotide probe. Microchim Acta 189:268. https://doi.org/10.1007/s00604-022-05364-9

    Article  CAS  Google Scholar 

  21. Qian L, Winfree E, Bruck J (2011) Neural network computation with DNA strand displacement cascades. Nature 475:368–372. https://doi.org/10.1038/nature10262

    Article  CAS  PubMed  Google Scholar 

  22. Rogers WB, Manoharan VN (2015) Programming colloidal phase transitions with DNA strand displacement. Science 347:639–642. https://doi.org/10.1126/science.1259762

    Article  CAS  PubMed  Google Scholar 

  23. Bielec K, Sozanski K, Seynen M et al (2019) Kinetics and equilibrium constants of oligonucleotides at low concentrations. Hybridization and melting study. Phys Chem Chem Phys 21:10798–10807. https://doi.org/10.1039/C9CP01295H

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. https://doi.org/10.1038/ncomms12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Juma KM, Takita T, Ito K et al (2021) Optimization of reaction condition of recombinase polymerase amplification to detect SARS-CoV-2 DNA and RNA using a statistical method. Biochem Bioph Res Co 567:195–200. https://doi.org/10.1016/j.bbrc.2021.06.023

    Article  CAS  Google Scholar 

  26. Ma XP, Wang YG, Zhao T et al (2014) Ultra-pH-sensitive nanoprobe Library with broad pH tunability and fluorescence emissions. J Am Chem Soc 136:11085–11092. https://doi.org/10.1021/ja5053158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alaejos ÁC, Cabrera SJ, Rodríguez BC, Castañeda AZ (2021) Validation and comparison of two analytical methods for imatinib therapeutic drug monitoring. Chromatographia 84:589–596. https://doi.org/10.1007/s10337-021-04041-y

    Article  CAS  Google Scholar 

  28. Ou M, Huang J, Yang XH et al (2017) MnO2 nanosheet mediated DD-A FRET binary probes for sensitive detection of intracellular mRNA. Chem Sci 8:668–673. https://doi.org/10.1039/C6SC03162E

    Article  CAS  PubMed  Google Scholar 

  29. Ratajczak K, Krazinski BE, Kowalczyk AE et al (2018) Hairpin-hairpin molecular beacon interactions for detection of survivin mRNA in malignant SW480 cells. ACS Appl Mater Inter 10:17028–17039. https://doi.org/10.1021/acsami.8b02342

    Article  CAS  Google Scholar 

  30. Jiang HY, Li FR, Li W et al (2018) Multiplexed determination of intracellular messenger RNA by using a graphene oxide nanoprobe modified with target-recognizing fluorescent oligonucleotides. Microchim Acta 185:552. https://doi.org/10.1007/s00604-018-3090-1

    Article  CAS  Google Scholar 

  31. Fan JL, Tong CY, Dang WY et al (2019) An rGONS-based biosensor for simultaneous imaging of p53 and p21 mRNA in living cells. Talanta 204:20–28. https://doi.org/10.1016/j.talanta.2019.05.087

    Article  CAS  PubMed  Google Scholar 

  32. Zhang WY, Hao WH, Liu XT et al (2020) Visual detection of miRNAs using enzyme-free amplification reactions and ratiometric fluorescent probes. Talanta 219:121332. https://doi.org/10.1016/j.talanta.2020.121332

    Article  CAS  PubMed  Google Scholar 

  33. Borghei YS, Hosseini M, Ganjali MR, Ju HX (2018) Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles. Microchim Acta 185:286. https://doi.org/10.1007/s00604-018-2825-3

    Article  CAS  Google Scholar 

  34. Yang JC, Wang K, Xu H et al (2019) Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: a review. Talanta 202:96–110. https://doi.org/10.1016/j.talanta.2019.04.054

    Article  CAS  PubMed  Google Scholar 

  35. Yan W, Wang W, Zheng G et al (2023) Two birds with one stone: ratiometric sensing platform overcoming cross-interference for multiple-scenario detection and accurate discrimination of tetracycline analogs. J Hazard Mater 458:132016. https://doi.org/10.1016/j.jhazmat.2023.132016

    Article  CAS  PubMed  Google Scholar 

  36. Hill MA, Meininger GA (2012) Arteriolar vascular smooth muscle cells: mechanotransducers in a complex environment. Int J Biochem Cell B 44:1505–1510. https://doi.org/10.1016/j.biocel.2012.05.021

    Article  CAS  Google Scholar 

  37. Yu XS, Hu LZ, He H et al (2019) Y-shaped DNA-mediated hybrid nanoflowers as efficient gene carriers for fluorescence imaging of tumor-related mRNA in living cells. Anal Chim Acta 1057:114–122. https://doi.org/10.1016/j.aca.2018.12.062

    Article  CAS  PubMed  Google Scholar 

  38. Wu QL, Liu ZJ, Su L et al (2018) Sticky-flares for monitoring of human telomerase RNA in living cells. Nanoscale 10:9386–9392. https://doi.org/10.1039/C8NR01260A

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500. https://doi.org/10.1126/science.1962210

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21703255), Anhui Province Science Fund for Outstanding Young Scholars (2208085Y27), Scientific Research Foundation for the Returned Overseas Chinese Scholars of Anhui Province-Key Projects (2021LCX003), Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (gxyqZD2021102), Research Fund of Anhui Institute of Translational Medicine (2021zhyx-C17), Research Fund for the Doctoral Program of Anhui Medical University (XJ201808), and Research Fund for Scientific Research Level Improvement Plan of Anhui Medical University (2020xkjT001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanyuan Zhang, Wei Du or Tingting Zhao.

Ethics declarations

Ethics approval

This is an observational study. The Ethics Committee of Anhui Medical University has confirmed that no ethical approval is required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 872 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, F., Yan, W., Qu, M. et al. Strand displacement–triggered FRET nanoprobe tracking TK1 mRNA in living cells for ratiometric fluorimetry of nucleic acid biomarker. Microchim Acta 191, 390 (2024). https://doi.org/10.1007/s00604-024-06453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06453-7

Keywords

Navigation