Log in

An integrated smartphone-based electrochemical detection system for highly sensitive and on-site detection of chemical oxygen demand by copper-cobalt bimetallic oxide-modified electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A portable and integrated electrochemical detection system has been constructed for on-site and real-time detection of chemical oxygen demand (COD). The system mainly consists of four parts: (i) sensing electrode with a copper-cobalt bimetallic oxide (CuCoOx)-modified screen-printed electrode; (ii) an integrated electrochemical detector for the conversion, amplification, and transmission of weak signals; (iii) a smartphone installed with a self-developed Android application (APP) for issuing commands, receiving, and displaying detection results; and (iv) a 3D-printed microfluidic cell for the continuous input of water samples. Benefiting from the superior catalytic capability of CuCoOx, the developed system shows a high detection sensitivity with 0.335 μA/(mg/L) and a low detection limit of 5.957 mg/L for COD determination and possessing high anti-interference ability to chloride ions. Moreover, this system presents good consistency with the traditional dichromate method in COD detection of actual water samples. Due to the advantages of cost effectiveness, portability, and point-of-care testing, the system shows great potential for water quality monitoring, especially in resource-limited remote areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article and its supplementary information files.

References

  1. Li J, Luo G, He L, Xu J, Lyu J (2017) Analytical approaches for determining chemical oxygen demand in water bodies: a review. Crit Rev Anal Chem 48:47–65. https://doi.org/10.1080/10408347.2017.1370670

    Article  CAS  PubMed  Google Scholar 

  2. Ma J (2017) Determination of chemical oxygen demand in aqueous samples with non-electrochemical methods. Trends Environ Anal Chem 14:37–43. https://doi.org/10.1016/j.teac.2017.05.002

    Article  CAS  Google Scholar 

  3. Gutiérrez-Capitán M, Baldi A, Gómez R, García V, Jiménez-Jorquera C, Fernández-Sánchez C (2015) Electrochemical nanocomposite-derived sensor for the analysis of chemical oxygen demand in urban wastewaters. Anal Chem 87:2152–2160. https://doi.org/10.1021/ac503329a

    Article  CAS  PubMed  Google Scholar 

  4. Badr IHA, Hassan HH, Hamed E, Abdel-Aziz AM (2017) Sensitive and green method for determination of chemical oxygen demand using a nano-copper based electrochemical sensor. Electroanalysis 29(10):2401–2409. https://doi.org/10.1002/elan.201700219

    Article  CAS  Google Scholar 

  5. Gao Y, Yu Z, Huang L, Zeng Y, Liu X, Tang D (2023) Photoinduced electron transfer modulated photoelectric signal: toward an organic small molecule-based photoelectrochemical platform for formaldehyde detection. Anal Chem 95(23):9130–9137. https://doi.org/10.1021/acs.analchem.3c01690

    Article  CAS  PubMed  Google Scholar 

  6. Lv S, Zhang K, Zhu L, Tang D, Niessner R, Knopp D (2019) H2-based electrochemical biosensor with Pd nanowires@ZIF-67 molecular sieve bilayered sensing interface for immunoassay. Anal Chem 91(18):12055–12062. https://doi.org/10.1021/acs.analchem.9b03177

    Article  CAS  PubMed  Google Scholar 

  7. Liao J, Chang F, Han X, Ge C, Lin S (2019) Wireless water quality monitoring and spatial map** with disposable whole-copper electrochemical sensors and a smartphone. Sens Actuators B Chem 306:127557. https://doi.org/10.1016/j.snb.2019.127557

    Article  CAS  Google Scholar 

  8. Lin Q, Yu Z, Lu L, Huang X, Wei Q, Tang D (2023) Smartphone-based photoelectrochemical immunoassay of prostate-specific antigen based on Co-doped Bi2O2S nanosheets. Biosens Bioelectron 230:115260. https://doi.org/10.1016/j.bios.2023.115260

    Article  CAS  PubMed  Google Scholar 

  9. Zeng R, Qiu M, Wan Q, Huang Z, Liu X, Tang D, Knopp D (2022) Smartphone-based electrochemical immunoassay for point-of-care detection of SARS-CoV-2 nucleocapsid protein. Anal Chem 94(43):15155–15161. https://doi.org/10.1021/acs.analchem.2c03606

    Article  CAS  PubMed  Google Scholar 

  10. Ji D, Liu L, Li S, Chen C, Lu Y, Wu J, Liu Q (2017) Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron 98:449–456. https://doi.org/10.1016/j.bios.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  11. Bandodkar AJ, Imani S, Nuñez-Flores R, Kumar R, Wang C, Mohan AMV, Wang J, Mercier PP (2017) Re-usable electrochemical glucose sensors integrated into a smartphone platform. Biosens Bioelectron 101:181–187. https://doi.org/10.1016/j.bios.2017.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ainla A, Mousavi MPS, Tsaloglou M-N, Redston J, Bell JG, Teresa Fernandez-Abedul M, Whitesides GM (2018) Open-source potentiostat for wireless electrochemical detection with smartphones. Anal Chem 90(10):6240–6246. https://doi.org/10.1021/acs.analchem.8b00850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aymerich J, Marquez A, Teres L, Munoz-Berbel X, Jimenez C, Dominguez C, Serra-Graells F, Dei M (2018) Cost-effective smartphone-based reconfigurable electrochemical instrument for alcohol determination in whole blood samples. Biosens Bioelectron 117:736–742. https://doi.org/10.1016/j.bios.2018.06.044

    Article  CAS  PubMed  Google Scholar 

  14. Sun AC, Yao C, Venkatesh AG, Hall DA (2016) An efficient power harvesting mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sens Actuators B Chem 235:126–135. https://doi.org/10.1016/j.snb.2016.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji D, Liu Z, Liu L, Low SS, Lu Y, Yu X, Zhu L, Li C, Liu Q (2018) Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens Bioelectron 119:55–62. https://doi.org/10.1016/j.bios.2018.07.074

    Article  CAS  PubMed  Google Scholar 

  16. Nemiroski A, Christodouleas DC, Hennek JW, Kumar AA, Maxwell EJ, Teresa Fernandez-Abedul M, Whitesides GM (2014) Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci U S A 111(33):11984–11989. https://doi.org/10.1073/pnas.1405679111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu K, Chen Q, Zhao Y, Ge C, Lin S, Liao J (2020) Cost-effective, wireless, and portable smartphone-based electrochemical system for on-site monitoring and spatial map** of the nitrite contamination in water. Sens Actuators B Chem 319:128221. https://doi.org/10.1016/j.snb.2020.128221

    Article  CAS  Google Scholar 

  18. Low SS, Pan Y, Ji D, Li Y, Lu Y, He Y, Chen Q, Liu Q (2020) Smartphone-based portable electrochemical biosensing system for detection of circulating microRNA-21 in saliva as a proof-of-concept. Sens Actuators B Chem 308:127718. https://doi.org/10.1016/j.snb.2020.127718

    Article  CAS  Google Scholar 

  19. Mo H, Tang Y, Wang N, Zhang M, Cheng H, Chen Y, Wan P, Sun Y, Liu S, Wang L (2016) Performance improvement in chemical oxygen demand determination using carbon fiber felt/CeO2-β-PbO2 electrode deposited by cyclic voltammetry method. J Solid State Electrochem 20:2179–2189. https://doi.org/10.1007/s10008-016-3207-6

    Article  CAS  Google Scholar 

  20. Silva CR, Conceicao CDC, Bonifacio VG, Fatibello Filho O, Teixeira MFS (2009) Determination of the chemical oxygen demand (COD) using a copper electrode: a clean alternative method. J Solid State Electrochem 13(5):665–669. https://doi.org/10.1007/s10008-008-0580-9

    Article  CAS  Google Scholar 

  21. Zhou M, Catanach J, Gomez J, Richins S, Deng S (2016) Effects of nanoporous carbon derived from microalgae and its CoO composite on capacitance. ACS Appl Mater Interfaces 9:4362–4373. https://doi.org/10.1021/acsami.6b08328

    Article  CAS  PubMed  Google Scholar 

  22. Zhang B, Huang L, Tang M, Hunter KW, Feng Y, Sun Q, Wang J, Chen G (2018) A nickel nanoparticle/Nafion-graphene oxide modified screen-printed electrode for amperometric determination of chemical oxygen demand. Microchim Acta 185:385. https://doi.org/10.1007/s00604-018-2917-0

    Article  CAS  Google Scholar 

  23. Huang X, Zhu Y, Yang W, Jiang A, ** X, Zhang Y, Yan L, Zhang G, Liu Z (2019) A self-supported CuO/Cu nanowire electrode as highly efficient sensor for COD measurement. Molecules 24(17):3132. https://doi.org/10.3390/molecules24173132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng D, Wang T, Zhang G, Wu H, Mei H (2020) A novel nonenzymatic electrochemical sensor based on double-shelled CuCo2O4 hollow microspheres for glucose and H2O2. J Alloys Compd 819:153014. https://doi.org/10.1016/j.jallcom.2019.153014

    Article  CAS  Google Scholar 

  25. Zakaria MB, Chikyow T (2017) Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments. Coord Chem Rev 352:328–345. https://doi.org/10.1016/j.ccr.2017.09.014

    Article  CAS  Google Scholar 

  26. Zhu X, Tang J, Ouyang X, Liao Y, Feng H, Yu J, Chen L, Lu Y, Yi Y, Tang L (2022) Hollow NiCo@C nanozyme-embedded paper-based colorimetric aptasensor for highly sensitive antibiotic Detection on a smartphone platform. Anal Chem 94:16768–16777. https://doi.org/10.1021/acs.analchem.2c03603

    Article  CAS  PubMed  Google Scholar 

  27. Zhu X, Tang J, Ouyang X, Liao Y, Feng H, Yu J, Chen L, Lu Y, Yi Y, Tang L (2022) Multifunctional MnCo@C yolk-shell nanozymes with smartphone platform for rapid colorimetric analysis of total antioxidant capacity and phenolic compounds. Biosens Bioelectron 216:114652. https://doi.org/10.1016/j.bios.2022.114652

    Article  CAS  PubMed  Google Scholar 

  28. Qiu M, Ren Y, Huang L, Zhu X, Liang T, Li M, Tang D (2023) FeNC nanozyme-based electrochemical immunoassay for sensitive detection of human epidermal growth factor receptor 2. Microchim Acta 190:378. https://doi.org/10.1007/s00604-023-05964-z

    Article  CAS  Google Scholar 

  29. Wang X, Wang H, Wan X, Li M, Tang D (2023) Smartphone-based photoelectrochemical immunoassay for carcinoembryonic antigen based on BiOCl/CuBi2O4 heterojunction. Anal Chim Acta 1279:341826. https://doi.org/10.1016/j.aca.2023.341826

    Article  CAS  PubMed  Google Scholar 

  30. Yu L, Hu H, Wu HB, Lou XW (2017) Complex hollow nanostructures: synthesis and energy-related applications. Adv Mater 29(15):1604563. https://doi.org/10.1002/adma.201604563

    Article  CAS  Google Scholar 

  31. Liu S, Hui KS, Hui KN (2016) Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors. ACS Appl Mater Interfaces 8(5):3258–3267. https://doi.org/10.1021/acsami.5b11001

    Article  CAS  PubMed  Google Scholar 

  32. Vijayakumar S, Lee S-H, Ryu K-S (2015) Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochim Acta 182:979–986. https://doi.org/10.1016/j.electacta.2015.10.021

    Article  CAS  Google Scholar 

  33. Yuan R-M, Li H-J, Yin X-M, Wang H-Q, Lu J-H, Zhang L-L (2018) Coral-like Cu-Co-mixed oxide for stable electro-properties of glucose determination. Electrochim Acta 273:502–510. https://doi.org/10.1016/j.electacta.2018.04.003

    Article  CAS  Google Scholar 

  34. Amri A, Duan X, Yin C-Y, Jiang Z-T, Rahman MM, Pryor T (2013) Solar absorptance of copper-cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies. Appl Surf Sci 275:127–135. https://doi.org/10.1016/j.apsusc.2013.01.081

    Article  CAS  Google Scholar 

  35. Zhang Y, Xu J, Zheng Y, Zhang Y, Hu X, Xu T (2017) Construction of CuCo2O4@CuCo2O4 hierarchical nanowire arrays grown on Ni foam for high-performance supercapacitors†. RSC Adv 7:3983–3991. https://doi.org/10.1039/c6ra25970g

    Article  CAS  Google Scholar 

  36. Cao F, Pan GX, **a XH, Tang PS, Chen HF (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sources 264:161–167. https://doi.org/10.1016/j.jpowsour.2014.04.103

    Article  CAS  Google Scholar 

  37. Wang H, Li Y, Deng D, Li M, Zhang C, Luo L (2021) NiO-coated CuCo2O4 nanoneedle arrays on carbon cloth for non-enzymatic glucose sensing. ACS Appl Nano Mater 4:9821–9830. https://doi.org/10.1021/acsanm.1c02228

    Article  CAS  Google Scholar 

  38. Wu M, Meng S, Wang Q, Si W, Huang W, Dong X (2015) Nickel-cobalt oxide decorated three-dimensional graphene as an enzyme mimic for glucose and calcium detection. ACS Appl Mater Interfaces 7(38):21089–21094. https://doi.org/10.1021/acsami.5b06299

    Article  CAS  PubMed  Google Scholar 

  39. Long L, Liu X, Chen L, Wang S, Liu M, Jia J (2019) MOF-derived 3D leaf-like CuCo oxide arrays as an efficient catalyst for highly sensitive glucose detection. Electrochim Acta 308:243–252. https://doi.org/10.1016/j.electacta.2019.04.039

    Article  CAS  Google Scholar 

  40. Cui S, Gu S, Ding Y, Zhang J, Zhang Z, Hu Z (2017) Hollow mesoporous CuCo2O4 microspheres derived from metal organic framework: a novel functional materials for simultaneous H2O2 biosensing and glucose biofuel cell. Talanta 178:788–795. https://doi.org/10.1016/j.talanta.2017.09.074

    Article  CAS  PubMed  Google Scholar 

  41. Fang Z, Chen D, Yan F, Lv J, Wang Y, Guan X (2021) A novel Ni/ZnO/Cu composite electrode with high sensitivity for detection of chemical oxygen demand. Surf Interfaces 24:101091. https://doi.org/10.1016/j.surfin.2021.101091

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the National Key Research and Development Program of China (2021YFC1910402 and 2021YFC1910400), the National Natural Science Foundation of China (No. U22A20617 and 52100184), the Hunan Provincial Natural Science Foundation of China (2022JJ40080), and the Hunan Provincial Key Research and Development Program of China (2021SK2039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Tang or Leyuan Fang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Zhu, X., Tang, J. et al. An integrated smartphone-based electrochemical detection system for highly sensitive and on-site detection of chemical oxygen demand by copper-cobalt bimetallic oxide-modified electrode. Microchim Acta 191, 343 (2024). https://doi.org/10.1007/s00604-024-06399-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06399-w

Keywords

Navigation