Log in

Nickel-cobalt metal-organic frameworks based flexible hydrogel as a wearable contact lens for electrochemical sensing of urea in tear samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A flexible, wearable, non-invasive contact lens sensor utilizing nickel-cobalt metal-organic framework (Ni-Co-MOF) based hydrogel is introduced for urea monitoring in tear samples. The synthesized Ni-Co-MOF hydrogel exhibits a porous structure with interconnected voids, as visualized by Scanning Electron Microscopy (SEM). Detailed structural and vibrational properties of the material were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Raman spectroscopy. The developed Ni-Co-MOF hydrogel sensor showcases a detection limit of 0.445 mM for urea within a linear range of 0.5–70 mM. Notably, it demonstrates exceptional selectivity, effectively distinguishing against interfering species like UA, AA, glucose, dopamine, Cl, K+, Na+, Ca2+, and IgG. The enhanced electrocatalytic performance of the Ni-Co-MOF hydrogel electrode is attributed to the presence of Ni and Co, fostering Ni2+ oxidation on the surface and forming a Co2+ complex that acts as a catalyst for urea oxidation. The fabricated sensor exhibits successful detection and retrieval of urea in simulated tear samples, showcasing promising potential for bioanalytical applications. The binder-free, non-toxic nature of the Ni-Co-MOF hydrogel sensor presents exciting avenues for future utilization in non-enzymatic electrochemical sensing, including applications in wearable devices, point-of-care diagnostics, and personalized healthcare monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schematic 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359. https://doi.org/10.1016/S0956-5663(01)00312-8

    Article  CAS  PubMed  Google Scholar 

  2. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26(6):2811–2821. https://doi.org/10.1016/j.bios.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  3. Yang X et al (2020) Flexible, wearable microfluidic contact lens with capillary networks for tear diagnostics. J Mater Sci 55(22):9551–9561. https://doi.org/10.1007/S10853-020-04688-2/METRICS

    Article  CAS  Google Scholar 

  4. Mishra GK, Mishra RK, Bhand S (2010) Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor. Biosens Bioelectron 26(4):1560–1564. https://doi.org/10.1016/j.bios.2010.07.113

    Article  CAS  PubMed  Google Scholar 

  5. Kukkar D, Zhang D, Jeon BH, Kim K-H (2022) Recent advances in wearable biosensors for non-invasive monitoring of specific metabolites and electrolytes associated with chronic kidney disease: performance evaluation and future challenges. TrAC Trends Anal Chem 150:116570. https://doi.org/10.1016/j.trac.2022.116570

    Article  CAS  Google Scholar 

  6. Remiszewska E et al (2019) Enzymatic method of urea determination in LTCC microfluidic system based on absorption photometry. Sensors Actuators B Chem 285:375–384. https://doi.org/10.1016/j.snb.2019.01.032

    Article  CAS  Google Scholar 

  7. Ali N, Ismail M, Khan A, Khan H, Haider S, Kamal T (2018) Spectrophotometric methods for the determination of urea in real samples using silver nanoparticles by standard addition and 2nd order derivative methods. Spectrochim Acta Part A Mol Biomol Spectrosc 189:110–115. https://doi.org/10.1016/j.saa.2017.07.063

    Article  CAS  Google Scholar 

  8. Ismail M et al (2022) Role of silver nanoparticles in fluorimetric determination of urea in urine samples. Spectrochim Acta Part A Mol Biomol Spectrosc 271:120889. https://doi.org/10.1016/j.saa.2022.120889

    Article  CAS  Google Scholar 

  9. Koebel M, Elsener M (1995) Determination of urea and its thermal decomposition products by high-performance liquid chromatography. J Chromatogr A 689(1):164–169. https://doi.org/10.1016/0021-9673(94)00922-V

    Article  CAS  Google Scholar 

  10. Liu L, Mo H, Wei S, Raftery D (2012) Quantitative analysis of urea in human urine and serum by 1 H nuclear magnetic resonance. Analyst 137(3):595–600. https://doi.org/10.1039/C2AN15780B

    Article  CAS  PubMed  Google Scholar 

  11. da Costa Filho PA, Cobuccio L, Mainali D, Rault M, Cavin C (2020) Rapid analysis of food raw materials adulteration using laser direct infrared spectroscopy and imaging. Food Control 113:107114. https://doi.org/10.1016/j.foodcont.2020.107114

    Article  CAS  Google Scholar 

  12. Elmasry MR et al (2023) Fluorometric and colorimetric hybrid carbon-dot nanosensors for dual monitoring of urea. ACS Appl Nano Mater 6(9):7992–8003. https://doi.org/10.1021/ACSANM.3C01247/ASSET/IMAGES/LARGE/AN3C01247_0006.JPEG

    Article  CAS  Google Scholar 

  13. Simeral LS (1997) Determination of urea, nitrate, and ammonium in aqueous solution using nitrogen-14 nuclear magnatic resonance. Appl Spectrosc 51(10):1585–1587. https://doi.org/10.1366/0003702971939145/ASSET/0003702971939145.FP.PNG_V03

    Article  CAS  Google Scholar 

  14. Roch-Ramel F (1967) An enzymic and fluorophotometric method for estimating urea concentrations in nanoliter specimens. Anal Biochem 21(3):372–381. https://doi.org/10.1016/0003-2697(67)90312-0

    Article  CAS  PubMed  Google Scholar 

  15. Hu L et al (2023) Hydrogel-based flexible electronics. Adv Mater 35(14):2205326. https://doi.org/10.1002/adma.202205326

    Article  CAS  Google Scholar 

  16. Mondal S, Sangaranarayanan MV (2013) A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode. Sensors Actuators B Chem 177:478–486. https://doi.org/10.1016/j.snb.2012.11.031

    Article  CAS  Google Scholar 

  17. Ezhilan M et al (2017) Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples. Sensors Actuators B Chem 238:1283–1292. https://doi.org/10.1016/j.snb.2016.09.100

    Article  CAS  Google Scholar 

  18. Zyoud SH et al (2023) Structural, optical, and electrical investigations of Nd2O3-doped PVA/PVP polymeric composites for electronic and optoelectronic applications. Polymers (Basel) 15(6):1351. https://doi.org/10.3390/polym15061351

    Article  CAS  PubMed  Google Scholar 

  19. Liao M, Liao H, Ye J, Wan P, Zhang L (2019) Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors. ACS Appl Mater Interfaces 11(50):47358–47364. https://doi.org/10.1021/acsami.9b16675

    Article  CAS  PubMed  Google Scholar 

  20. Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A (2022) Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: advances toward designing the ideal flexible/wearable nanoprobes. Adv Colloid Interf Sci 305:102705. https://doi.org/10.1016/j.cis.2022.102705

    Article  CAS  Google Scholar 

  21. Abudabbus MM, Jevremović I, Nešović K, Perić-Grujić A, Rhee KY, Mišković-Stanković V (2018) In situ electrochemical synthesis of silver-doped poly(vinyl alcohol)/graphene composite hydrogels and their physico-chemical and thermal properties. Compos Part B Eng 140:99–107. https://doi.org/10.1016/j.compositesb.2017.12.017

    Article  CAS  Google Scholar 

  22. Devi LS, Palathinkal RP, Dasmahapatra AK (2024) Preparation of cross-linked PANI/PVA conductive hydrogels for electrochemical energy storage and sensing applications. Polymer (Guildf) 293:126673. https://doi.org/10.1016/j.polymer.2024.126673

    Article  CAS  Google Scholar 

  23. Ahmadi M et al (2021) An investigation of affecting factors on MOF characteristics for biomedical applications: a systematic review. Heliyon 7(4):e06914. https://doi.org/10.1016/j.heliyon.2021.e06914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song K et al (2022) Tailoring the crystal forms of the Ni-MOF catalysts for enhanced photocatalytic CO2-to-CO performance. Appl Catal B Environ 309:121232. https://doi.org/10.1016/j.apcatb.2022.121232

    Article  CAS  Google Scholar 

  25. Pan Y et al (2022) Benzoic acid-modified 2D Ni-MOF for high-performance supercapacitors. Electrochim Acta 403:139679. https://doi.org/10.1016/j.electacta.2021.139679

    Article  CAS  Google Scholar 

  26. Zhao H et al (2022) Electrocatalytic reduction of 4-nitrophenol over Ni-MOF/NF: understanding the self-enrichment effect of H-bonds. Chem Commun 58(31):4897–4900. https://doi.org/10.1039/D2CC00111J

    Article  CAS  Google Scholar 

  27. Destruel P-L et al (2020) Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Int J Pharm 574:118734. https://doi.org/10.1016/j.ijpharm.2019.118734

    Article  CAS  PubMed  Google Scholar 

  28. **an H, Mengjun J, Yanyan Z, Ling H (2017) A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Adv 7(5):2450–2459. https://doi.org/10.1039/C6RA25579E

    Article  Google Scholar 

  29. Park H et al (2009) Effect of swelling ratio of injectable hydrogel composites on Chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 10(3):541–546. https://doi.org/10.1021/bm801197m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Wang Y, Chen Y, Wang C, Guo L (2020) NiCo-MOF nanosheets wrap** polypyrrole nanotubes for high-performance supercapacitors. Appl Surf Sci 507:145089. https://doi.org/10.1016/j.apsusc.2019.145089

    Article  CAS  Google Scholar 

  31. Yang X et al (2023) NiCo-MOF Nanospheres created by the ultra-fast microwave method for use in high-performance Supercapacitors. Molecules 28(14):5613. https://doi.org/10.3390/molecules28145613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh N, Malik A, Nohwar S, Jana R, Mondal PC (2023) Covalent surface modification of nickel ferrite nanoparticles for electrochemical supercapacitor performance. New J Chem 47(11):5308–5315. https://doi.org/10.1039/D2NJ05566J

    Article  CAS  Google Scholar 

  33. Sha R, Komori K, Badhulika S (2017) Graphene–polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea. Electrochim Acta 233:44–51. https://doi.org/10.1016/j.electacta.2017.03.043

    Article  CAS  Google Scholar 

  34. Tran TQN, Das G, Yoon HH (2017) Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection. Sensors Actuators B Chem 243:78–83. https://doi.org/10.1016/j.snb.2016.11.126

    Article  CAS  Google Scholar 

  35. Zheng L et al (2019) Ni-P nanostructures on flexible paper for morphology effect of nonenzymatic electrocatalysis for urea. Electrochim Acta 320:134586. https://doi.org/10.1016/j.electacta.2019.134586

    Article  CAS  Google Scholar 

  36. Yoon J, Lee E, Lee D, Oh T-S, Yoon YS, Kim D-J (2017) Communication—highly sensitive ag/ZnO Nanorods composite electrode for non-enzymatic urea detection. J Electrochem Soc 164(12):B558–B560. https://doi.org/10.1149/2.1341712JES/XML

    Article  CAS  Google Scholar 

  37. Kumar THV, Sundramoorthy AK (2018) Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode. J Electrochem Soc 165(8):B3006–B3016. https://doi.org/10.1149/2.0021808jes

    Article  CAS  Google Scholar 

  38. Liu J, Siavash Moakhar R, Sudalaiyadum Perumal A, Roman HN, Mahshid S, Wachsmann-Hogiu S (2020) An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection. Sci Rep 10(1):9527. https://doi.org/10.1038/s41598-020-66422-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amin S et al (2019) A practical non-enzymatic urea sensor based on NiCo 2 O 4 nanoneedles. RSC Adv 9(25):14443–14451. https://doi.org/10.1039/C9RA00909D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bao C, Niu Q, Chen Z-A, Cao X, Wang H, Lu W (2019) Ultrathin nickel-metal–organic framework nanobelt based electrochemical sensor for the determination of urea in human body fluids. RSC Adv 9(50):29474–29481. https://doi.org/10.1039/C9RA05716A

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mangrio S et al (2023) Advanced Urea Precursors Driven NiCo2O4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications. Biosens 13(4):444. https://doi.org/10.3390/BIOS13040444

    Article  CAS  Google Scholar 

  42. Zhang H, Zhang Y, Wang M, Shen Y, Liu B (2020) Electro-oxidation of Urea on the Nickel Phosphate-based Nanomaterials. Int J Electrochem Sci 15(4):3400–3409. https://doi.org/10.20964/2020.04.02

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.B. acknowledges financial assistance from Department of Science and Technology (DST) Nano Mission project DST/ NM/ NT/2020/322.

Author information

Authors and Affiliations

Authors

Contributions

Gopika Mukundan – Conceptualization, Methodology, Data curation, Validation, Visualization, Writing- original draft preparation.

Sushmee Badhulika - Conceptualization, Funding acquisition, Investigation, Project administration, Resources, Supervision, Writing – review & editing.

Corresponding author

Correspondence to Sushmee Badhulika.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukundan, G., Badhulika, S. Nickel-cobalt metal-organic frameworks based flexible hydrogel as a wearable contact lens for electrochemical sensing of urea in tear samples. Microchim Acta 191, 252 (2024). https://doi.org/10.1007/s00604-024-06339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06339-8

Keywords

Navigation