Log in

Photonics-powered augmented reality skin electronics for proactive healthcare: multifaceted opportunities

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials’ extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Iwendi C (2023) Innovative augmented and virtual reality applications for disease diagnosis based on integrated genetic algorithms. Int J Cogn Comput Eng 4:266–276. https://doi.org/10.1016/j.ijcce.2023.07.004

    Article  Google Scholar 

  2. Parekh P, Patel S, Patel N, Shah M (2020) Systematic review and meta-analysis of augmented reality in medicine, retail, and games. Vis Comput Ind Biomed Art 3. https://doi.org/10.1186/s42492-020-00057-7

  3. Ahmed Taha B, Al-Jubouri Q, Chahal S et al (2023) State-of-the-art telemodule-enabled intelligent optical nano-biosensors for proficient SARS-CoV-2 monitoring. Microchem J:109774. https://doi.org/10.1016/j.microc.2023.109774

  4. Taha BA, Al Mashhadany Y, Al-Jubouri Q et al (2023) Next-generation nanophotonic-enabled biosensors for intelligent diagnosis of SARS-CoV-2 variants. Sci Total Environ 880:163333. https://doi.org/10.1016/j.scitotenv.2023.163333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mehta V (2018) Devraj, Chugh H, Banerjee P (2018) Applications of augmented reality in emerging health diagnostics: a survey. Int Conf Autom Comput Eng ICACE 2018:45–51. https://doi.org/10.1109/ICACE.2018.8687114

    Article  Google Scholar 

  6. Hong C, Wang L (2023) Virtual reality technology in nursing professional skills training: bibliometric analysis. JMIR Serious Games 11. https://doi.org/10.2196/44766

  7. Taha BA, Al-Jubouri Q, Al Mashhadany Y et al (2023) Density estimation of SARS-CoV2 spike proteins using super pixels segmentation technique. Appl Soft Comput 138:110210. https://doi.org/10.1016/j.asoc.2023.110210

    Article  PubMed  PubMed Central  Google Scholar 

  8. Piszczek M, MacIejewski M, Pomianek M (2018) Photonic input-output devices used in virtual and augmented reality technologies. URSI 2018 - Balt URSI Symp 145–146. https://doi.org/10.23919/URSI.2018.8406754

  9. Manea HK, Molood YN, Al-Jubouri Q et al (2023) A comparative study of plastic and glass optical fibers for reliable home networking. ECS J Solid State Sci Technol 12:057003. https://doi.org/10.1149/2162-8777/acd1ac

    Article  Google Scholar 

  10. Taha BA (2021) Perspectives of photonics technology to diagnosis COVID–19 viruses: a short review. J Appl Sci Nanotechnol 1:1–6. https://doi.org/10.53293/jasn.2021.11016

    Article  Google Scholar 

  11. Taha BA, Al Mashhadany Y, Al-Jubouri Q et al (2023) Uncovering the morphological differences between SARS-CoV-2 and SARS-CoV based on transmission electron microscopy images. Microbes Infect 25:105187. https://doi.org/10.1016/j.micinf.2023.105187

    Article  CAS  PubMed  Google Scholar 

  12. Xu C, Solomon SA, Gao W (2023) Artificial intelligence-powered electronic skin. Nat Mach Intell 5:1344–1355. https://doi.org/10.1038/s42256-023-00760-z

    Article  PubMed  Google Scholar 

  13. Min J, Demchyshyn S, Sempionatto JR et al (2023) An autonomous wearable biosensor powered by a perovskite solar cell. Nat Electron 6:630–641. https://doi.org/10.1038/s41928-023-00996-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadri B, Gao W (2023) Fibrous wearable and implantable bioelectronics. Appl Phys Rev 10. https://doi.org/10.1063/5.0152744

  15. Zhou W, Zhang C, Ren A et al (2023) Responsive liquid-crystal microlaser arrays with tactile perception. Adv Opt Mater 11:2202879. https://doi.org/10.1002/adom.202202879

    Article  CAS  Google Scholar 

  16. Zhu L, Wang Y, Mei D et al (2022) Large‐area hand‐covering elastomeric electronic skin sensor with distributed multifunctional sensing capability. Adv Intell Syst 4. https://doi.org/10.1002/aisy.202100118

  17. Fan L, He Z, Peng X et al (2021) Injectable, intrinsically antibacterial conductive hydrogels with self-healing and ph stimulus responsiveness for epidermal sensors and wound healing. ACS Appl Mater Interfaces 13:53541–53552. https://doi.org/10.1021/acsami.1c14216

    Article  CAS  PubMed  Google Scholar 

  18. Masood T, Egger J (2021) Augmented reality: focusing on photonics in Industry 4.0. IEEE J Sel Top Quantum Electron 27. https://doi.org/10.1109/JSTQE.2021.3093721

  19. Cañón Bermúdez GS, Karnaushenko DD, Karnaushenko D et al (2018) Magnetosensitive e-skins with directional perception for augmented reality. Sci Adv 4:1–10. https://doi.org/10.1126/sciadv.aao2623

    Article  CAS  Google Scholar 

  20. Haider AJ, Sultan FI, Haider MJ et al (2023) Characterization of laser dye concentrations in ZnO nanostructures for optimization of random laser emission performance. Int J Mod Phys B 2450111:1–24. https://doi.org/10.1142/S021797922450111X

    Article  Google Scholar 

  21. Taha BA, Al MY, Al-Jumaily AHJ et al (2022) SARS-CoV-2 morphometry analysis and prediction of real virus levels based on full recurrent neural network using TEM images. Viruses 14:2386. https://doi.org/10.3390/v14112386

    Article  PubMed  PubMed Central  Google Scholar 

  22. Taha BA, Mehde MS, Haider AJ, Arsad N (2023) Mathematical model of the DBR laser for thermal tuning: taxonomy and performance effectiveness with PbSe materials. J Opt 52:1415–1425. https://doi.org/10.1007/s12596-022-00978-x

    Article  Google Scholar 

  23. & SM, Sumant O, PORTLAND O (2020) Ar in healthcare market. Allied Mark Res Publ a Rep 5285:1–8

    Google Scholar 

  24. Chengoden R, Victor N, Huynh-The T et al (2023) Metaverse for healthcare: a survey on potential applications, challenges and future directions. IEEE Access 11:12765–12795

    Article  Google Scholar 

  25. Kim K, Yang H, Lee J, Lee WG (2023) Metaverse wearables for immersive digital healthcare: a review. Adv Sci 10:2303234. https://doi.org/10.1002/advs.202303234

    Article  Google Scholar 

  26. Ashely-Welbeck A, Vlachopoulos D (2020) Teachers’ perceptions on using Augmented Reality for language learning in Primary Years Programme (PYP) education. Int J Emerg Technol Learn 15:116–135. https://doi.org/10.3991/ijet.v15i12.13499

    Article  Google Scholar 

  27. Xu J, Pan J, Cui T et al (2023) Recent progress of tactile and force sensors for human–machine interaction. Sensors 23:1–27. https://doi.org/10.3390/s23041868

    Article  CAS  Google Scholar 

  28. Kazemzadeh K, Akhlaghdoust M, Zali A (2023) Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery. Front Surg:10

  29. Douglas DB, Wilke CA, Gibson JD et al (2017) Augmented reality: advances in diagnostic imaging. Multimodal Technol Interact 1:29

    Article  Google Scholar 

  30. Rus G, Andras I, Vaida C et al (2023) Artificial intelligence-based hazard detection in robotic-assisted single-incision oncologic surgery. Cancers (Basel) 15:3387

    Article  PubMed  Google Scholar 

  31. Favolise M (2021) The effectiveness of augmented and virtual reality in the education of physical therapy students. Arch Phys Med Rehabil 102:e84

    Article  Google Scholar 

  32. Khokale R, Mathew GS, Ahmed S et al (2023) Virtual and augmented reality in post-stroke rehabilitation: a narrative review. Cureus. https://doi.org/10.7759/cureus.37559

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ahmad I, Asghar Z, Kumar T et al (2022) Emerging technologies for next generation remote health care and assisted living. IEEE Access 10:56094–56132. https://doi.org/10.1109/ACCESS.2022.3177278

    Article  Google Scholar 

  34. Worlikar H, Coleman S, Kelly J et al (2023) Mixed reality platforms in telehealth delivery: sco** review. JMIR Biomed Eng 8:e42709. https://doi.org/10.2196/42709

    Article  PubMed Central  Google Scholar 

  35. Zhavoronkov A, Vanhaelen Q, Oprea TI (2020) Will artificial intelligence for drug discovery impact clinical pharmacology? Clin Pharmacol Ther 107:780–785. https://doi.org/10.1002/cpt.1795

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lush V, Buckingham C, Edwards S, Bernardet U (2020) Towards accessible mental healthcare through augmented reality and self-assessment tools. Int J Online Biomed Eng 16:33. https://doi.org/10.3991/ijoe.v16i04.12095

    Article  Google Scholar 

  37. Luo C (2024) Unlocking medical potentials: an in-depth investigation of augmented reality technology in medicine. Commun Humanit Res 27:126–130. https://doi.org/10.54254/2753-7064/27/20232151

    Article  Google Scholar 

  38. Lim-Saco F (2019) Philosophical and contextual issues in nursing theory development concerning technological competency as caring in nursing. J Med Investig 66:8–11. https://doi.org/10.2152/jmi.66.8

    Article  Google Scholar 

  39. Shine, MBA, CBE T, Thomason, PhD, Msc. J, Khan, PhD I et al (2023) Blockchain in healthcare: 2023 predictions from around the globe. Blockchain Healthc Today 6. https://doi.org/10.30953/bhty.v6.245

  40. Noghabaei M, Heydarian A, Balali V, Han K (2020) Trend analysis on adoption of virtual and augmented reality in the architecture, engineering, and construction industry. Data 5:26. https://doi.org/10.3390/data5010026

    Article  Google Scholar 

  41. Farooq MS, Zahid Z, Omer U et al (2022) Applications of augmented reality in neurology: architectural model and guidelines. IEEE Access 10:102804–102830. https://doi.org/10.1109/ACCESS.2022.3206600

    Article  Google Scholar 

  42. Cirillo A, Cirillo P, De Maria G et al (2014) An artificial skin based on optoelectronic technology. Sensors Actuators A Phys 212:110–122. https://doi.org/10.1016/j.sna.2014.03.030

    Article  CAS  Google Scholar 

  43. Taha BA, Addie AJ, Haider AJ et al (2024) Exploring trends and opportunities in quantum-enhanced advanced photonic illumination technologies. Adv Quantum Technol 2300414:1–19. https://doi.org/10.1002/qute.202300414

    Article  Google Scholar 

  44. Li H, **e R, **aoqing WEI, Wang J (2022) Flexible photonic skin, 11419548. https://patents.google.com/patent/US20200359963A1/en?oq=Patent+Publication+Number:+20200359963

    Google Scholar 

  45. Zhang C, Dong H, Zhang C et al (2021) Photonic skins based on flexible organic microlaser arrays. Sci Adv 7:1–9. https://doi.org/10.1126/sciadv.abh3530

    Article  Google Scholar 

  46. Peng X, Dong K, Ye C et al (2020) A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 6. https://doi.org/10.1126/sciadv.aba9624

  47. Gao L, Zhang Y, Malyarchuk V et al (2014) Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun 5:1–10. https://doi.org/10.1038/ncomms5938

    Article  CAS  Google Scholar 

  48. Liu X, Ren G, Xu X et al (2023) “Dial up” photonic integrated circuit filter. J Light Technol 41:1775–1783. https://doi.org/10.1109/JLT.2022.3226685

    Article  CAS  Google Scholar 

  49. Shi Y, Wan C, Dai C et al (2022) Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photon Rev 16:2100638. https://doi.org/10.1002/lpor.202100638

    Article  Google Scholar 

  50. Nishant A, Kim K-J, Showghi SA et al (2022) High refractive index chalcogenide hybrid inorganic/organic polymers for integrated photonics. Adv Opt Mater 10:2200176. https://doi.org/10.1002/adom.202200176

    Article  CAS  Google Scholar 

  51. Millard K, Rainouard F (2023, March) Convergence of mathematical and physical optical designs for the development of random photonic integrated circuits for an unconventional AR display concept. In: Optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR) IV, vol 12449. SPIE, pp 152–161

    Google Scholar 

  52. Chen M, Lu L, Yu H et al (2021) Integration of colloidal quantum dots with photonic structures for optoelectronic and optical devices. Adv Sci 8:1–22. https://doi.org/10.1002/advs.202101560

    Article  CAS  Google Scholar 

  53. Liba O, Sorelle ED, Sen D, De La Zerda A (2016) Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging. Sci Rep 6:1–12. https://doi.org/10.1038/srep23337

    Article  CAS  Google Scholar 

  54. Mat Yeh RM, Taha BA, Bachok NN et al (2024) Advancements in detecting porcine-derived proteins and DNA for enhancing food integrity: taxonomy, challenges, and future directions. Food Control 161:110399. https://doi.org/10.1016/j.foodcont.2024.110399

    Article  CAS  Google Scholar 

  55. Taha BA, Mokhtar MHH, Apsari R et al (2023) Nanotools for screening neurodegenerative diseases. In: Gautam A, Chaudhary V (eds) Theranostic applications of nanotechnology in neurological disorders. Springer Nature Singapore, Singapore, pp 251–266

    Chapter  Google Scholar 

  56. Wan B, Ganier C, Du-Harpur X et al (2021) Applications and future directions for optical coherence tomography in dermatology*. Br J Dermatol 184:1014–1022. https://doi.org/10.1111/bjd.19553

    Article  CAS  PubMed  Google Scholar 

  57. Ji X, Mojahed D, Okawachi Y et al (2021) Millimeter-scale chip–based supercontinuum generation for optical coherence tomography. Sci Adv 7:eabg8869. https://doi.org/10.1126/sciadv.abg8869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen K, Lu H, Wang MR (2016) Improving lateral resolution of optical coherence tomography for imaging of skins. Three-dimensional multidimens microsc image acquis process XXIII, vol 9713. pp 97130N. https://doi.org/10.1117/12.2213143

  59. Adabi S, Turani Z, Fatemizadeh E et al (2017) Optical coherence tomography technology and quality improvement methods for optical coherence tomography images of skin: a short review. Biomed Eng Comput Biol 8:117959721771347. https://doi.org/10.1177/1179597217713475

    Article  Google Scholar 

  60. Kislevitz M, Akgul Y, Wamsley C et al (2020) Use of optical coherence tomography (OCT) in aesthetic skin assessment—a short review. Lasers Surg Med 52:699–704. https://doi.org/10.1002/lsm.23219

    Article  PubMed  Google Scholar 

  61. Ji X, Mojahed D, Okawachi Y, Gaeta AL, Hendon CP, Lipson M (2021) Millimeter-scale chip–based supercontinuum generation for optical coherence tomography. Sci Adv 7(38):eabg8869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maguluri G, Grimble J, Mujat M et al (2022) Fiber-based hand-held RCM-OCT probe for noninvasive assessment of skin lesions and therapy guidance. Transl Biophotonics 4:1–8. https://doi.org/10.1002/tbio.202200002

    Article  CAS  Google Scholar 

  63. Chen TH, Lee YH, Ng CY, Tsai MT, Lee CK, Lee HC (2023) Development of an automatic algorithm enabling layer segmentation and optical characteristic analysis in skin optical coherence tomography imaging. In: Photonics in dermatology and plastic surgery 2023, vol 12352. SPIE, pp 7–10

    Google Scholar 

  64. Swanson EC, Friedly JL, Wang RK, Sanders JE (2020) Optical coherence tomography for the investigation of skin adaptation to mechanical stress. Ski Res Technol 26:627–638. https://doi.org/10.1111/srt.12843

    Article  Google Scholar 

  65. Tsai M-R, Ho T-S, Wu Y-H, Lu C-W (2021) In vivo dual-mode full-field optical coherence tomography for differentiation of types of melanocytic nevi. J Biomed Opt 26:1–8. https://doi.org/10.1117/1.jbo.26.2.020501

    Article  CAS  Google Scholar 

  66. McMillan L, O’Mahoney P, Feng K et al (2021) Development of a predictive Monte Carlo radiative transfer model for ablative fractional skin lasers. Lasers Surg Med 53:731–740. https://doi.org/10.1002/lsm.23335

    Article  PubMed  Google Scholar 

  67. Chen M, Feng X, Markey MK, Tunnell JW (2022) Combined reflectance confocal microscopy and Raman spectroscopy for skin cancer diagnosis. In: Microscopy histopathology and analytics. Optica Publishing Group, p MM2A-5

    Google Scholar 

  68. Gorzelanny C, Mess C, Schneider SW et al (2020) Skin barriers in dermal drug delivery: which barriers have to be overcome and how can we measure them? Pharmaceutics 12:1–31. https://doi.org/10.3390/pharmaceutics12070684

    Article  Google Scholar 

  69. Bratchenko IA, Bratchenko LA, Moryatov AA et al (2021) In vivo diagnosis of skin cancer with a portable Raman spectroscopic device. Exp Dermatol 30:652–663. https://doi.org/10.1111/exd.14301

    Article  CAS  PubMed  Google Scholar 

  70. Ilchenko O, Pilhun Y, Kutsyk A (2022) Towards Raman imaging of centimeter scale tissue areas for real-time opto-molecular visualization of tissue boundaries for clinical applications. Light Sci Appl 11:22–24. https://doi.org/10.1038/s41377-022-00828-2

    Article  CAS  Google Scholar 

  71. Zhang S, Bi R, Zhang R et al (2022) An all metasurface-based fiber needle probe for Raman spectroscopy. Front Phys 10:1–12. https://doi.org/10.3389/fphy.2022.1093284

  72. Matveeva I, Bratchenko I, Khristoforova Y et al (2022) Multivariate curve resolution alternating least squares analysis of in vivo skin Raman spectra. Sensors 22. https://doi.org/10.3390/s22249588

  73. Heng HPS, Shu C, Zheng W et al (2021) Advances in real‐time fiber‐optic Raman spectroscopy for early cancer diagnosis: pushing the frontier into clinical endoscopic applications.https://doi.org/10.1002/tbio.202000018

  74. Zavaleta CL, Garai E, Liu JTC et al (2013) A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci U S A 110. https://doi.org/10.1073/pnas.1211309110

  75. Khristoforova YA, Bratchenko LA, Skuratova MA, Lebedeva EA, Lebedev PA, Bratchenko IA (2023) Raman spectroscopy in chronic heart failure diagnosis based on human skin analysis. J Biophotonics 16(7):e202300016

    Article  PubMed  Google Scholar 

  76. Yang J, Zhang Z, Zhou P et al (2023) Toward a new generation of permeable skin electronics. Nanoscale 15:3051–3078. https://doi.org/10.1039/d2nr06236d

    Article  CAS  PubMed  Google Scholar 

  77. Li W, Jia J, Sun X et al (2023) A light/pressure bifunctional electronic skin based on a bilayer structure of PEDOT:PSS-coated cellulose paper/CsPbBr 3 QDs film. Polymers (Basel) 15:2136. https://doi.org/10.3390/polym15092136

    Article  CAS  PubMed  Google Scholar 

  78. Takamatsu T, Sijie Y, Shujie F et al (2020) Multifunctional high-power sources for smart contact lenses. Adv Funct Mater 30:1–8. https://doi.org/10.1002/adfm.201906225

    Article  CAS  Google Scholar 

  79. Liu X, Ye Y, Ge Y et al (2024) Smart contact lenses for healthcare monitoring and therapy. ACS Nano 18:6817–6844. https://doi.org/10.1021/acsnano.3c12072

    Article  CAS  PubMed  Google Scholar 

  80. Kim J, Kim M, Lee M-S et al (2017) Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun 8:14997. https://doi.org/10.1038/ncomms14997

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jacobs DS, Carrasquillo KG, Cottrell PD et al (2021) BCLA CLEAR – medical use of contact lenses. Contact Lens Anterior Eye 44:289–329. https://doi.org/10.1016/j.clae.2021.02.002

    Article  PubMed  Google Scholar 

  82. Keum DH, Kim S-K, Koo J et al (2020) Wireless smart contact lens for diabetic diagnosis and therapy. Sci Adv 6. https://doi.org/10.1126/sciadv.aba3252

  83. Lee S, Jo I, Kang S et al (2017) Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 11:5318–5324. https://doi.org/10.1021/acsnano.7b00370

    Article  CAS  PubMed  Google Scholar 

  84. Lei M, Feng K, Ding S et al (2022) Breathable and waterproof electronic skin with three-dimensional architecture for pressure and strain sensing in nonoverlap** mode. ACS Nano 16:12620–12634. https://doi.org/10.1021/acsnano.2c04188

    Article  CAS  PubMed  Google Scholar 

  85. Wang R, Feng S, Wang Y et al (2023) A transparent, and self-healable strain-sensor e-skin based on polyurethane membrane with silver nanowires. Coatings 13:829. https://doi.org/10.3390/coatings13050829

    Article  CAS  Google Scholar 

  86. Park J, Kim J, Kim SY et al (2018) Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv 4:1–12. https://doi.org/10.1126/sciadv.aap9841

    Article  CAS  Google Scholar 

  87. Guo S, Wu K, Li C et al (2021) Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 4:969–985. https://doi.org/10.1016/j.matt.2020.12.002

    Article  CAS  PubMed  Google Scholar 

  88. El Turk S, Tarnini M, Al Hassanieh S et al (2024) Implementation of the seeded growth method in fabricating 3D-printed nanocomposite contact lenses for selective transmission. Adv Eng Mater 26:2301093. https://doi.org/10.1002/adem.202301093

    Article  CAS  Google Scholar 

  89. Mirzajani H, Mirlou F, Istif E et al (2022) Powering smart contact lenses for continuous health monitoring: recent advancements and future challenges. Biosens Bioelectron 197:113761. https://doi.org/10.1016/j.bios.2021.113761

    Article  CAS  PubMed  Google Scholar 

  90. Lee K, Cavalcanti TC, Kim S et al (2023) Multi-task and few-shot learning-based fully automatic deep learning platform for mobile diagnosis of skin diseases. IEEE J Biomed Heal Informatics 27:176–187. https://doi.org/10.1109/JBHI.2022.3193685

    Article  Google Scholar 

  91. Kumari J, Das K, Goldust M (2023) Metaverse in diagnosis of skin diseases. J Cosmet Dermatol 22:698–699. https://doi.org/10.1111/jocd.15409

    Article  PubMed  Google Scholar 

  92. Seah D, Cheng Z, Vendrell M (2023) Fluorescent probes for imaging in humans: where are we now? ACS Nano 17:19478–19490. https://doi.org/10.1021/acsnano.3c03564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reichel D, Sagong B, Teh J et al (2020) Near infrared fluorescent nanoplatform for targeted intraoperative resection and chemotherapeutic treatment of glioblastoma. ACS Nano 14:8392–8408. https://doi.org/10.1021/acsnano.0c02509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Leiloglou M, Kedrzycki MS, Chalau V et al (2022) Indocyanine green fluorescence image processing techniques for breast cancer macroscopic demarcation. Sci Rep 12:1–15. https://doi.org/10.1038/s41598-022-12504-x

    Article  CAS  Google Scholar 

  95. Rennie MY, Dunham D, Lindvere-Teene L et al (2019) Understanding real-time fluorescence signals from bacteria and wound tissues observed with the MolecuLight i:XTM. Diagnostics 9. https://doi.org/10.3390/diagnostics9010022

  96. **ao P (2016) Photothermal radiometry for skin research. Cosmetics 3. https://doi.org/10.3390/cosmetics3010010

  97. Al-Kinani MA, Haider AJ, Al-Musawi S (2021) Study the effect of laser wavelength on polymeric metallic nanocarrier synthesis for curcumin delivery in prostate cancer therapy: in vitro study. J Appl Sci Nanotechnol 1:43–50. https://doi.org/10.53293/jasn.2021.11023

    Article  Google Scholar 

  98. Shakaty A, Hmood J, Mahdi B (2022) Characterizations of nanodiamond composite film for photonics applications. J Appl Sci Nanotechnol 2:52–63. https://doi.org/10.53293/jasn.2022.4350.1101

    Article  Google Scholar 

  99. Iorizzo TW, Jermain PR, Salomatina E et al (2021) Temperature induced changes in the optical properties of skin in vivo. Sci Rep 11:1–9. https://doi.org/10.1038/s41598-020-80254-9

    Article  CAS  Google Scholar 

  100. Overchuk M, Weersink RA, Wilson BC, Zheng G (2023) Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano 17:7979–8003. https://doi.org/10.1021/acsnano.3c00891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ai X, Wang Y (2022) The cube surface light field for interactive free-viewpoint rendering. Appl Sci 12. https://doi.org/10.3390/app12147212

  102. Yin J, Xu X-l, **ong X-h, Marszałek Z (2022) An enhancement method of waveform simulation in dual-color laser field imaging based on Internet of Things. Mob Networks Appl. https://doi.org/10.1007/s11036-021-01903-5

    Article  Google Scholar 

  103. Ismara KI, Surwi F, Thoyyibah N (2022) Development of augmented reality based occupational health and safety guidebook in electricity basic laboratory. Int J Health Sci (Qassim) 6:11377–11395. https://doi.org/10.53730/ijhs.v6ns5.11025

    Article  Google Scholar 

  104. Jeong K-J, Gwak J, Wang C et al (2022) Chirality of fingerprints: pattern- and curvature-induced emerging chiroptical properties of elastomeric grating meta-skin. ACS Nano 16:6103–6110. https://doi.org/10.1021/acsnano.1c11597

    Article  CAS  PubMed  Google Scholar 

  105. Vázquez-Iglesias L, Stanfoca Casagrande GM, García-Lojo D et al (2024) SERS sensing for cancer biomarker: approaches and directions. Bioact Mater 34:248–268. https://doi.org/10.1016/j.bioactmat.2023.12.018

    Article  CAS  PubMed  Google Scholar 

  106. Sisignano M, Lötsch J, Parnham MJ, Geisslinger G (2019) Potential biomarkers for persistent and neuropathic pain therapy. Pharmacol Ther 199:16–29. https://doi.org/10.1016/j.pharmthera.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  107. Gupta A, Mathew R, Anand A et al (2024) A DNA aptamer-based assay for the detection of soluble ST2, a prognostic biomarker for monitoring heart failure. Int J Biol Macromol 256:128295. https://doi.org/10.1016/j.ijbiomac.2023.128295

    Article  CAS  PubMed  Google Scholar 

  108. Chaudhury S, Sau K (2023) A blockchain-enabled internet of medical things system for breast cancer detection in healthcare. Healthc Anal 4:100221. https://doi.org/10.1016/j.health.2023.100221

    Article  Google Scholar 

  109. Chaudhary S, Kakkar R, Jadav NK et al (2022) A taxonomy on smart healthcare technologies: security framework, case study, and future directions. J Sensors 2022:1–30. https://doi.org/10.1155/2022/1863838

    Article  CAS  Google Scholar 

  110. Sempionatto JR, Lin M, Yin L et al (2021) An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat Biomed Eng 5:737–748. https://doi.org/10.1038/s41551-021-00685-1

    Article  CAS  PubMed  Google Scholar 

  111. Paranjape M, Garra J, Brida S et al (2003) A PDMS dermal patch for non-intrusive transdermal glucose sensing. Sensors Actuators A Phys 104:195–204. https://doi.org/10.1016/S0924-4247(03)00049-9

    Article  CAS  Google Scholar 

  112. Chen H, Dejace L, Lacour SP (2021) Electronic skins for healthcare monitoring and smart prostheses. Annu Rev Control Robot Auton Syst 4:629–650. https://doi.org/10.1146/annurev-control-071320-101023

    Article  Google Scholar 

  113. Yu C, Shah A, Amiri N et al (2023) A conformable ultrasound patch for cavitation‐enhanced transdermal cosmeceutical delivery. Adv Mater 35. https://doi.org/10.1002/adma.202300066

  114. Wang C, He T, Zhou H et al (2023) Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectron Med 9:17. https://doi.org/10.1186/s42234-023-00118-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zheng H, Mei P, Wang W et al (2023) Effects of super absorbent polymer on crop yield, water productivity and soil properties: a global meta-analysis. Agric Water Manag 282:108290. https://doi.org/10.1016/j.agwat.2023.108290

    Article  Google Scholar 

  116. Kim S, Day CM, Song Y et al (2023) Innovative topical patches for non-melanoma skin cancer: current challenges and key formulation considerations. Pharmaceutics 15:2577. https://doi.org/10.3390/pharmaceutics15112577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rybak D, Su Y-C, Li Y et al (2023) Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications. Nanoscale 15:8044–8083. https://doi.org/10.1039/D3NR00807J

    Article  CAS  PubMed  Google Scholar 

  118. Elragal R, Elragal A, Habibipour A (2023) Healthcare analytics—a literature review and proposed research agenda. Front Big Data 6. https://doi.org/10.3389/fdata.2023.1277976

  119. Gao X, Chen X, Hu H et al (2022) A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat Commun 13:7757. https://doi.org/10.1038/s41467-022-35455-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guk K, Han G, Lim J et al (2019) Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 9:813. https://doi.org/10.3390/nano9060813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yuan X, Ouaskioud O, Yin X et al (2023) Epidermal wearable biosensors for the continuous monitoring of biomarkers of chronic disease in interstitial fluid. Micromachines 14:1452. https://doi.org/10.3390/mi14071452

    Article  PubMed  PubMed Central  Google Scholar 

  122. Smith AA, Li R, Tse ZTH (2023) Resha** healthcare with wearable biosensors. Sci Rep 13:4998. https://doi.org/10.1038/s41598-022-26951-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu Y, Haghniaz R, Hartel MC et al (2023) A breathable, passive‐cooling, non‐inflammatory, and biodegradable aerogel electronic skin for wearable physical‐electrophysiological‐chemical analysis. Adv Mater 35. https://doi.org/10.1002/adma.202209300

  124. Dervisevic M, Alba M, Prieto-Simon B, Voelcker NH (2020) Skin in the diagnostics game: wearable biosensor nano- and microsystems for medical diagnostics. Nano Today 30:100828. https://doi.org/10.1016/j.nantod.2019.100828

    Article  CAS  Google Scholar 

  125. Manikkath J, Subramony JA (2021) Toward closed-loop drug delivery: integrating wearable technologies with transdermal drug delivery systems. Adv Drug Deliv Rev 179:113997. https://doi.org/10.1016/j.addr.2021.113997

    Article  CAS  PubMed  Google Scholar 

  126. Rubins U, Marcinkevics Z, Cimurs J et al (2019) Multimodal device for real-time monitoring of skin oxygen saturation and microcirculation function. Biosensors 9:97. https://doi.org/10.3390/bios9030097

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kazanskiy NL, Khonina SN, Butt MA (2024) A review on flexible wearables-recent developments in non-invasive continuous health monitoring. Sensors Actuators A Phys:114993. https://doi.org/10.1016/j.sna.2023.114993

  128. Sun C, Bu N, Hu X (2023) Recent trends in electronic skin for transdermal drug delivery. Intell Pharm 1:183–191. https://doi.org/10.1016/j.ipha.2023.08.001

    Article  Google Scholar 

  129. Wong SHD, Deen GR, Bates JS et al (2023) Smart skin‐adhesive patches: from design to biomedical applications. Adv Funct Mater 33. https://doi.org/10.1002/adfm.202213560

  130. Seo YJ, Kwon KH (2022) An application of AR in cosmetological industry after coronavirus disease-19 pandemic. J Cosmet Dermatol 21:5314–5320

    Article  PubMed  Google Scholar 

  131. Chidambaram S, Stifano V, Demetres M et al (2021) Applications of augmented reality in the neurosurgical operating room: a systematic review of the literature. J Clin Neurosci 91:43–61

    Article  PubMed  Google Scholar 

  132. Iqbal MA, Saleh A, Darwito HA (2020) Implementation of the introduction of skin diseases based on augmented reality. IES 2020 - Int Electron Symp Role Auton Intell Syst Hum Life Comf:406–410. https://doi.org/10.1109/IES50839.2020.9231615

  133. Hamady M, Canale L, Kyrginas D, Yable DK, Zissis G (2023) Development of an optical analysis device using the ray tracing method for the detection of skin infections. In: 2023 IEEE sustainable smart lighting world conference & expo (LS18). IEEE, pp 1–4

    Google Scholar 

  134. Ubbink DT, Janssen HAM, Schreurs MMA, Jacobs M (1995) Capillary microscopy is a diagnostic aid in patients with acral ischemia. Angiology 46:59–64

    Article  CAS  PubMed  Google Scholar 

  135. Narayanamurthy V, Padmapriya P, Noorasafrin A et al (2018) Skin cancer detection using non-invasive techniques. RSC Adv 8:28095–28130. https://doi.org/10.1039/c8ra04164d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sengupta K, Nagatsuma T, Mittleman DM (2018) Terahertz integrated electronic and hybrid electronic–photonic systems. Nat Electron 1:622–635. https://doi.org/10.1038/s41928-018-0173-2

    Article  Google Scholar 

  137. Wilson BC, Eu D (2022) Optical spectroscopy and imaging in surgical management of cancer patients. Transl Biophotonics 4:1–24. https://doi.org/10.1002/tbio.202100009

    Article  CAS  Google Scholar 

  138. Egawa M (2021) Raman microscopy for skin evaluation. Analyst 146:1142–1150. https://doi.org/10.1039/d0an02039g

    Article  CAS  PubMed  Google Scholar 

  139. Perevedentseva E, Ali N, Karmenyan A et al (2019) Optical studies of nanodiamond-tissue interaction: skin penetration and localization. Materials (Basel) 12. https://doi.org/10.3390/ma12223762

  140. López-Dorado A, Ortiz M, Satue M et al (2021) Early diagnosis of multiple sclerosis using swept-source optical coherence tomography and convolutional neural networks trained with data augmentation. Sensors 22:167. https://doi.org/10.3390/s22010167

    Article  PubMed  PubMed Central  Google Scholar 

  141. Min J, Tu J, Xu C et al (2023) Skin-interfaced wearable sweat sensors for precision medicine. Chem Rev 123:5049–5138. https://doi.org/10.1021/acs.chemrev.2c00823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sempionatto JR, Lasalde-Ramírez JA, Mahato K et al (2022) Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem 6:899–915. https://doi.org/10.1038/s41570-022-00439-w

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yang Y, Song Y, Bo X et al (2020) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38:217–224. https://doi.org/10.1038/s41587-019-0321-x

    Article  CAS  PubMed  Google Scholar 

  144. Yu Y, Nassar J, Xu C et al (2020) Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci Robot 5:1–13. https://doi.org/10.1126/SCIROBOTICS.AAZ7946

    Article  Google Scholar 

  145. Tao Y, Rajapakse A, Erickson A (2022) Advanced antireflection for back-illuminated silicon photomultipliers to detect faint light. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-022-18280-y

    Article  CAS  Google Scholar 

  146. Gautam V, Trivedi NK, Anand A et al (2023) Early skin disease identification using deep neural network. Comput Syst Sci Eng 44:2259–2275. https://doi.org/10.32604/csse.2023.026358

    Article  Google Scholar 

  147. Kim JJ, Wang Y, Wang H, Lee S, Yokota T, Someya T (2021) Skin electronics: next‐generation device platform for virtual and augmented reality. Adv Funct Mater 31(39):2009602

  148. Al MM, Uddin MS (2021) Hybrid methodologies for segmentation and classification of skin diseases: a study. J Comput Commun 09:67–84. https://doi.org/10.4236/jcc.2021.94005

    Article  Google Scholar 

  149. Bancel E, Genier E, Santagata R et al (2023) All-fiber frequency agile triple-frequency comb light source. Nat Commun 14:7953. https://doi.org/10.1038/s41467-023-43734-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Amiri IS, Azzuhri SR Bin, Jalil MA et al (2018) Introduction to photonics: principles and the most recent applications of microstructures. Micromachines 9. https://doi.org/10.3390/mi9090452

  151. Lederman JC, Zhang W, de Lima TF et al (2023) Real-time photonic blind interference cancellation. Nat Commun 14:1–10. https://doi.org/10.1038/s41467-023-43982-w

    Article  CAS  Google Scholar 

  152. Brueck SR (2004) Photonics in nanotechnology. In: Photonic applications systems technologies conference. Optica Publishing Group, p PMA2

    Google Scholar 

  153. Delmas P, Hao J, Rodat-Despoix L (2011) Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12:139–153. https://doi.org/10.1038/nrn2993

    Article  CAS  PubMed  Google Scholar 

  154. Yu S, Zhou P, ** W et al (2023) General deep learning framework for emissivity engineering. Light Sci Appl 12. https://doi.org/10.1038/s41377-023-01341-w

  155. Yang Y, Chapman RJ, Haylock B et al (2024) Programmable high-dimensional Hamiltonian in a photonic waveguide array. Nat Commun 15:50. https://doi.org/10.1038/s41467-023-44185-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Qian L, Wu JY, Dimaio SP et al (2020) A review of augmented reality in robotic-assisted surgery. IEEE Trans Med Robot Bionics 2:1–16. https://doi.org/10.1109/TMRB.2019.2957061

    Article  Google Scholar 

  157. Wendler T, van Leeuwen FWB, Navab N, van Oosterom MN (2021) How molecular imaging will enable robotic precision surgery: the role of artificial intelligence, augmented reality, and navigation. Eur J Nucl Med Mol Imaging 48:4201–4224. https://doi.org/10.1007/s00259-021-05445-6

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chen J, Fu Y, Lu W, Pan Y (2023) Augmented reality-enabled human-robot collaboration to balance construction waste sorting efficiency and occupational safety and health. J Environ Manage 348:119341. https://doi.org/10.1016/j.jenvman.2023.119341

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to extend gratitude towards Photonics Technology Research Group, Lab, Pusat Kejuruteraan Elektronik Dan Komunikasi Terkehadapan (PAKET), Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia. The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number  NBU-FFR-2024-1299-05, as well as the University of Technology, Baghdad, Iraq.

Funding

The authors acknowledge the Fundamental Research Grant Scheme (FRGS), grant number FRGS/1/2021/TK0/UKM/02/17 funded by the Ministry of Higher Education (MOHE) Malaysia, and Ganjaran Penerbitan, grant number GP-K013436, Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

B.A.T.: wrote the initial manuscript draft, conceptualization, and methodology. A.J.A.: wrote the initial manuscript draft, analysis and critical evaluation, and review and editing. A.J.H. and A.SA.: investigation, conceptualization, and methodology. V.C.: writing—review and editing. N.A.: supervision and validation. All authors have reviewed and accepted the published version of the manuscript.

Corresponding authors

Correspondence to Bakr Ahmed Taha, Ahmad S. Azzahran or Norhana Arsad.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, B.A., Addie, A.J., Kadhim, A.C. et al. Photonics-powered augmented reality skin electronics for proactive healthcare: multifaceted opportunities. Microchim Acta 191, 250 (2024). https://doi.org/10.1007/s00604-024-06314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06314-3

Keywords

Navigation