Log in

A portable intelligent hydrogel platform for multicolor visual detection of HAase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Hyaluronidase (HAase) is an important endoglycosidase involved in numerous physiological and pathological processes, such as apoptosis, senescence, and cancer progression. Simple, convenient, and sensitive detection of HAase is important for clinical diagnosis. Herein, an easy-to-operate multicolor visual sensing strategy was developed for HAase determination. The proposed sensor was composed of an enzyme-responsive hydrogel and a nanochromogenic system (gold nanobipyramids (AuNBPs)). The enzyme-responsive hydrogel, formed by polyethyleneimine-hyaluronic acid (PEI-HA), was specifically hydrolyzed with HAase, leading to the release of platinum nanoparticles (PtNPs). Subsequently, PtNPs catalyzed the mixed system of 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2 to produce TMB2+ under acidic conditions. Then, TMB2+ effectively etched the AuNBPs and resulted in morphological changes in the AuNBPs, accompanied by a blueshift in the localized surface plasmon resonance peak and vibrant colors. Therefore, HAase can be semiquantitatively determined by directly observing the color change of AuNBPs with the naked eye. On the basis of this, the method has a linear detection range of HAase concentrations between 0.6 and 40 U/mL, with a detection limit of 0.3 U/mL. In addition, our designed multicolor biosensor successfully detected the concentration of HAase in human serum samples. The results showed no obvious difference between this method and enzyme-linked immunosorbent assay, indicating the good accuracy and usability of the suggested method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Snetkov P, Zakharova K, Morozkina S, Olekhnovich R, Uspenskaya M (2020) Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers (Basel) 12(8):1800. https://doi.org/10.3390/polym12081800

    Article  CAS  PubMed  Google Scholar 

  2. Eissa S, Shehata H, Mansour A, Esmat M, El-Ahmady O (2012) Detection of hyaluronidase RNA and activity in urine of schistosomal and non-schistosomal bladder cancer. Med Oncol 29(5):3345–3351. https://doi.org/10.1007/s12032-012-0295-8

    Article  CAS  PubMed  Google Scholar 

  3. Skarmoutsos I, Skarmoutsos A, Katafigiotis I, Tataki E, Giagini A, Adamakis I, Alamanis C, Duvdevani M, Sitaras N, Constantinides C (2018) Hyaluronic acid and hyaluronidase as possible novel urine biomarkers for the diagnosis of prostate cancer. Med Oncol 35(7):97. https://doi.org/10.1007/s12032-018-1157-9

    Article  CAS  PubMed  Google Scholar 

  4. Fu Y, Zhang X, Liu X, Wang P, Chu W, Zhao W, Wang Y, Zhou G, Yu Y, Zhang H (2022) The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis. Signal Transduct Target Ther 7(1):81. https://doi.org/10.1038/s41392-022-00896-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Warren G, Durso J, Levin N (1948) A modified turbidimetric method for the assay of hyaluronidase. Endocrinology 43(1):48–51. https://doi.org/10.1210/endo-43-1-48

    Article  CAS  PubMed  Google Scholar 

  6. Vercruysse K, Lauwers A, Demeester J (1995) Absolute and empirical determination of the enzymatic activity and kinetic investigation of the action of hyaluronidase on hyaluronan using viscosimetry. Biochem J 306:153–160. https://doi.org/10.1042/bj3060153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steiner B, Cruce D (1992) A zymographic assay for detection of hyaluronidase activity on polyacrylamide gels and its application to enzymatic activity found in bacteria. Anal Biochem 200(2):405–410. https://doi.org/10.1016/0003-2697(92)90487-r

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Huang Q, Ruan S, Luo F, You R, Feng S, Zhu L, Wu Y, Lu Y (2022) Self-calibration SERS sensor with "core-satellite" structure for detection of hyaluronidase activity. Anal Chim Acta 1227:340302. https://doi.org/10.1016/j.aca.2022.340302

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Huang X, Liu H, Luo F, Qiu B, Lin Z, Chen H (2022) Electrochemiluminescence biosensor for hyaluronidase based on the adjustable electrostatic interaction between the surface-charge-controllable nanoparticles and negatively charged electrode. ACS Sens 7(7):2012–2019. https://doi.org/10.1021/acssensors.2c00801

    Article  CAS  PubMed  Google Scholar 

  10. Yang W, Ni J, Luo F, Weng W, Wei Q, Lin Z, Chen G (2017) Cationic carbon dots for modification-free detection of hyaluronidase via an electrostatic-controlled ratiometric fluorescence assay. Anal Chem 89(16):8384–8390. https://doi.org/10.1021/acs.analchem.7b01705

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Zhou Z, Tang Y, Cheng Zhang C, Zheng Y, Gao J, Wang Q (2018) Modulation of assembly and disassembly of a new tetraphenylethene based nanosensor for highly selective detection of hyaluronidase. Sens Actuators B Chem 276:95–100. https://doi.org/10.1016/j.snb.2018.08.093

    Article  CAS  Google Scholar 

  12. Zhang P, Wang L, Zeng J, Tan J, Long Y, Wang Y (2020) Colorimetric captopril assay based on oxidative etching-directed morphology control of silver nanoprisms. Microchim Acta 187(2):107. https://doi.org/10.1007/s00604-019-4071-8

    Article  CAS  Google Scholar 

  13. Hafez E, Moon BS, Shaban SM, Pyun DG, Kim DH (2021) Multicolor diagnosis of salivary alkaline phosphatase triggered by silver-coated gold nanobipyramids. Microchim Acta 188(12):423. https://doi.org/10.1007/s00604-021-05080-w

    Article  CAS  Google Scholar 

  14. Wang Y, Zhang P, Fu W, Zhao Y (2018) Morphological control of nanoprobe for colorimetric antioxidant detection. Biosens Bioelectron 122:183–188. https://doi.org/10.1016/j.bios.2018.09.058

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Zeng Y, Fu W, Zhang P, Li L, Ye C, Yu L, Zhu X, Zhao S (2018) Seed-mediated growth of Au@Ag core-shell nanorods for the detection of ellagic acid in whitening cosmetics. Anal Chim Acta 1002:97–104. https://doi.org/10.1016/j.aca.2017.11.067

    Article  CAS  PubMed  Google Scholar 

  16. Li L, Zhang P, Fu W, Yang M, Wang Y (2018) Use of seed-mediated growth of bimetallic nanorods as a knob for antioxidant assay. Sens Actuators B Chem 276:158–165. https://doi.org/10.1016/j.snb.2018.08.104

    Article  CAS  Google Scholar 

  17. Kermanshahian K, Yadegar A, Ghourchian H (2021) Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: strategies and applications. Coord Chem Rev 442:213934. https://doi.org/10.1016/j.ccr.2021.213934

  18. Moitra P, Alafeef M, Dighe K, Frieman MB, Pan D (2020) Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 14(6):7617–7627. https://doi.org/10.1021/acsnano.0c03822

    Article  CAS  PubMed  Google Scholar 

  19. Tian F, Fu R, Zhou J, Cui Y, He Y (2020) Manganese dioxide nanosheet-mediated etching of gold nanorods for a multicolor colorimetric assay of total antioxidant capacity. Sens Actuators B Chem 321:128604

  20. Ma X, Chen Z, Kannan P, Lin Z, Qiu B, Guo L (2016) Gold nanorods as colorful chromogenic substrates for semiquantitative detection of nucleic acids, proteins, and small molecules with the naked eye. Anal Chem 88(6):3227–3234. https://doi.org/10.1021/acs.analchem.5b04621

    Article  CAS  PubMed  Google Scholar 

  21. Xu S, Chen X, Chen X, Liang Y (2020) Visual assay for determination of copper ions based on anti-etching of gold nanorods induced by cuprous ions. Microchim Acta 187(3):157. https://doi.org/10.1007/s00604-020-4149-3

    Article  CAS  Google Scholar 

  22. Ma X, Lin Y, Guo L, Qiu B, Chen G, Yang HH, Lin Z (2017) A universal multicolor immunosensor for semiquantitative visual detection of biomarkers with the naked eyes. Biosens Bioelectron 87:122–128. https://doi.org/10.1016/j.bios.2016.08.021

    Article  CAS  PubMed  Google Scholar 

  23. Chow TH, Li N, Bai X, Zhuo X, Shao L, Wang J (2019) Gold nanobipyramids: an emerging and versatile type of plasmonic nanoparticles. Acc Chem Res 52(8):2136–2146. https://doi.org/10.1021/acs.accounts.9b00230

    Article  CAS  PubMed  Google Scholar 

  24. Xu S, Ouyang W, **e P, Lin Y, Qiu B, Lin Z, Chen G, Guo L (2017) Highly uniform gold nanobipyramids for ultrasensitive colorimetric detection of influenza virus. Anal Chem 89(3):1617–1623. https://doi.org/10.1021/acs.analchem.6b03711

    Article  CAS  PubMed  Google Scholar 

  25. Lu D, Qin M, Zhao Y, Li H, Luo L, Ding C, Cheng P, Su M, Li H, Song Y, Li J (2023) Supramolecular photonic hydrogel for high-sensitivity alkaline phosphatase detection via synergistic driving force. Small 19(12):e2206461. https://doi.org/10.1002/smll.202206461

    Article  CAS  PubMed  Google Scholar 

  26. Li Z, Tang C, Huang D, Qin W, Luo F, Wang J, Guo L, Qiu B, Lin Z (2019) Sensitive hyaluronidase biosensor based on target-responsive hydrogel using electronic balance as readout. Anal Chem 91(18):11821–11826. https://doi.org/10.1021/acs.analchem.9b02487

    Article  CAS  PubMed  Google Scholar 

  27. Lian M, Chen X, Lu Y, Yang W (2016) Self-assembled peptide hydrogel as a smart biointerface for enzyme-based electrochemical biosensing and cell monitoring. ACS Appl Mater Interfaces 8(38):25036–25042. https://doi.org/10.1021/acsami.6b05409

    Article  CAS  PubMed  Google Scholar 

  28. Bao B, Zeng Q, Li K, Wen J, Zhang Y, Zheng Y, Zhou R, Shi C, Chen T, **ao C, Chen B, Wang T, Yu K, Sun Y, Lin Q, He Y, Tu S, Zhu L (2023) Rapid fabrication of physically robust hydrogels. Nat Mater 22(10):1253–1260. https://doi.org/10.1038/s41563-023-01648-4

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Soni SS, D'Elia AM, Alsasa A, Cho S, Tylek T, O'Brien EM, Whitaker R, Spiller KL, Rodell CB (2022) Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomater Sci 10(24):6951–6967. https://doi.org/10.1039/d2bm01113a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. **ao L, Zhao Y, Chang G, Yan H, Zou R, Zhang X, Wang S, He H (2023) A 3D phytic acid cross-linked high-porous conductive hydrogel integrating g-C3N4 for electrochemical multiplex sensing of heavy metal ions. Anal Chim Acta 1269:341341. https://doi.org/10.1016/j.aca.2023.341341

  31. Wang Y, Zhang D, Zhang H, Shang L, Zhao Y (2022) Responsive photonic alginate hydrogel particles for the quantitative detection of alkaline phosphatase. NPG Asia Mater 14(1):54. https://doi.org/10.1038/s41427-022-00401-8

    Article  ADS  CAS  Google Scholar 

  32. Wang J, Zhang XB, Wang ZL, Wang LM, **ng W, Liu X (2012) One-step and rapid synthesis of "clean" and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction. Nanoscale 4(5):1549–1552. https://doi.org/10.1039/c2nr11912a

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Sánchez-Iglesias A, Winckelmans N, Altantzis T, Bals S, Grzelczak M, Liz-Marzán LM (2017) High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J Am Chem Soc 139(1):107–110. https://doi.org/10.1021/jacs.6b12143

    Article  CAS  PubMed  Google Scholar 

  34. Liu M, Yang Z, Li B, Du J (2021) Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk. Food Chem 339:128059. https://doi.org/10.1016/j.foodchem.2020.128059

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, Wang N, Wang X, Ai S (2013) Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide. Microchim Acta 180(15-16):1517–1522. https://doi.org/10.1007/s00604-013-1068-6

    Article  CAS  Google Scholar 

  36. Luo Q, Tian M, Luo F, Zhao M, Lin C, Qiu B, Wang J, Lin Z (2023) Multicolor biosensor for trypsin detection based on the regulation of the peroxidase activity of bovine serum albumin-coated gold nanoclusters and etching of gold nanobipyramids. Anal Chem 95(4):2390–2397. https://doi.org/10.1021/acs.analchem.2c04418

    Article  CAS  PubMed  Google Scholar 

  37. Shou W, Yang S, Wang Y, Qiu B, Lin Z, Guo L (2021) Agarose hydrogel doped with gold nanobipyramids(AuNBPs@AG)as colorful height readout device for sensing hydrogen peroxide in complex sample matrix. Sens Actuators B Chem 344:130059. https://doi.org/10.1016/j.snb.2021.130059

  38. Josephy P, Eling T, Mason R (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3',5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257(7):3669–3675

  39. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different cap** ligands. Colloids Surf B 58(1):3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005

    Article  CAS  Google Scholar 

  40. Zhu Q, Wu J, Zhao J, Ni W (2015) Role of bromide in hydrogen peroxide oxidation of CTAB-stabilized gold nanorods in aqueous solutions. Langmuir 31(14):4072–4077. https://doi.org/10.1021/acs.langmuir.5b00137

    Article  CAS  PubMed  Google Scholar 

  41. Wang W, Xu Y, Hou J, Li Z, Luo F, He D, Lin Z (2023) Multicolor biosensor for hyaluronidase based on target-responsive hydrogel and etching of gold nanorods by H(2)O(2). Talanta 257:124367. https://doi.org/10.1016/j.talanta.2023.124367

    Article  CAS  PubMed  Google Scholar 

  42. Sreeprasad T, Samal A, Pradeep T (2007) Body- or tip-controlled reactivity of gold nanorods and their conversion to particles through other anisotropic structures. Langmuir: ACS J Surf Colloids 23(18):9463–9471. https://doi.org/10.1021/la700851x

    Article  CAS  Google Scholar 

  43. Wang Z, Gao R, Nikoobakht B, El-Sayed M (2000) Surface reconstruction of the unstable {110} surface in gold nanorods. J Phys Chem B 104(23):5417–5420

  44. Zhou G, Yang Y, Han S, Chen W, Fu Y, Zou C, Zhang L, Huang S (2013) Growth of nanobipyramid by using large sized Au decahedra as seeds. ACS Appl Mater Interfaces 5(24):13340–13352. https://doi.org/10.1021/am404282j

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (no. 22264018); Jiangxi Provincial Natural Science Foundation (20224BAB213005, 20232BAB216118, 20232BAB203019); the Science and technology research project of Jiangxi Provincial Department of Education (GJJ201253); and the Doctoral Scientific Research Foundation of Jiangxi University of Chinese Medicine (2022BSZR008, 2021BSZR013, 2020BSZR006).

Author information

Authors and Affiliations

Authors

Contributions

Zhe Zhao: carried out experiments, wrote the manuscript. Zhixin Li: carried out experiments, corrected, and edited. Jiahui Huang: manuscript reviewed, corrected, and edited. **aoyu Deng: technique support, secured funding. Fang Jiang: revised the manuscript. Ray P. S. Han: theoretical support. Yingzhou Tao: instructed the students, revised the manuscript and secured funding. Shaohua Xu: designed the experiments, instructed the students, and secured funding.

Corresponding authors

Correspondence to Ray P.S. Han, Yingzhou Tao or Shaohua Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3696 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, Z., Huang, J. et al. A portable intelligent hydrogel platform for multicolor visual detection of HAase. Microchim Acta 191, 101 (2024). https://doi.org/10.1007/s00604-024-06181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06181-y

Keywords

Navigation